Peer-review of the Wildlife Conservation Plan, prepared by the Wildlife Institute of India (WII) for the Etalin Hydropower Project, Dibang Valley, Arunachal Pradesh

5 May 2020

CONTRIBUTORS LISTED ALPHABETICALLY

Anindya Sinha, PhD, National Institute of Advanced Studies, Bengaluru

Anirban Datta Roy, PhD, Independent researcher

Arjun Kamdar, National Centre for Biological Sciences, Bengaluru

Aparajita Datta, PhD, Senior Scientist, Nature Conservation Foundation, Bengaluru

Chihi Umbrey, MSc, Department of Zoology, Rajiv Gandhi University, Itanagar, Arunachal Pradesh Chintan Sheth, MSc, Independent researcher

M. Firoz Ahmed, PhD, Scientist F, Head, Herpetofauna Research and Conservation Division, Aaranyak, Guwahati

Jagdish Krishnaswamy, PhD, Convenor and Senior Fellow, Ashoka Trust for Research in Ecology and the Environment, Bengaluru

Jayanta Kumar Roy, PhD, Senior Researcher, Herpetofauna Research and Conservation Division, Aaranyak, Guwahati

Karthik Teegalapalli, PhD, Independent researcher

Khyanjeet Gogoi, TOSEHIM, Regional Orchids Germplasm Conservation and Propagation Centre, Assam Circle

Krishnapriya Tamma, PhD, Azim Premji University, Bengaluru

Manish Kumar, PhD, Fellow, Centre for Ecology Development and Research, Uttarakhand

Megha Rao, MSc, Nature Conservation Foundation, Bengaluru

Monsoonjyoti Gogoi, PhD, Scientist B, Bombay Natural History Society

Narayan Sharma, PhD, Assistant Professor, Cotton University, Guwahati

Neelesh Dahanukar, PhD, Scientist, Zoo Outreach Organization, Coimbatore

Rajeev Raghavan, PhD, South Asia Coordinator, South Asia IUCN Freshwater Fish Specialist Group

Rameshori Yumnam, PhD, Member, IUCN Freshwater Fish Specialist Group

Sanjay Molur, PhD, Zoo Outreach Organization, Coimbatore

Sayan Banerjee, MPhil, National Institute of Advanced Studies, Bengaluru

Shashank Dalvi, MSc, Independent researcher

Shantanu Joshi, MSc, National Centre for Biological Sciences, Bengaluru

Rohan Menzies, MSc, Nature Conservation Foundation, Bengaluru

Rohit Naniwadekar, PhD, Nature Conservation Foundation, Bengaluru

Umesh Srinivasan, PhD, Assistant Professor, Indian Institute of Science, Bengaluru

EXECUTIVE SUMMARY

A group of Indian scientists including botanists, entomologists, ornithologists, mammalogists, herpetologists, aquatic fauna specialists, hydrologists, geographers and social scientists, many with research experience in Arunachal Pradesh, including in the Dibang Valley, have conducted a peerreview of the Wildlife Institute of India's (WII) Technical Report titled 'Wildlife Conservation Plan for the impact zone of Etalin HEP, Dibang Valley District, Arunachal Pradesh'(hereafter, the Report). The Report was prepared in response to the Forest Advisory Committee's (FAC) recommendation to conduct "a multiple seasonal replicate study on biodiversity assessment of the catchment area" of the 3097 MW Etalin Hydro Electric Project (HEP) in Dibang Valley, Arunachal Pradesh. Overall, the review encountered considerable deficiencies, contradictory claims and scientific biases which have compromised the quality and the veracity of the Report's findings and conclusions. Below are some noteworthy findings:

- 1. The entire study was conducted in under 5 months from February to June 2018. This cannot be considered a 'multiple seasonal replicate' study and does not represent three seasons in Arunachal Pradesh with distinct rainfall and weather patterns: (a) October to February: relatively dry season/winter; (b) March-April: spring/pre-monsoon; and, (c) May to September: summer/monsoon.
- 2. *Flawed methodologies and lack of rigour:* The Report suffers from several technical shortcomings:
 - a. The sampling was done in a much smaller area ('Zone of Influence', ZoI) than will see the direct and indirect impacts of the HEP. Even within the ZoI, not all grids were surveyed, ignoring the potentially disastrous impact of the HEP on yet undiscovered and endemic taxa in a biodiversity hotspot. Most surveys were conducted along roads and other anthropogenically impacted areas using unscientific and biased methods. Not all elevations were sampled despite ample evidence that elevational gradients contribute to high biodiversity in the Eastern Himalayas.
 - b. Birds were surveyed outside the breeding season significantly reducing detection rates.
 - c. Several groups of taxa were not surveyed at all, including numerous insect orders such as Hymenoptera (bees, wasps and ants), Diptera (flies), Orthoptera (grasshoppers, locusts and crickets), and arthropod species such as scorpions, and pseudo-scorpions, and other taxa such as crustaceans (crabs), molluscs (snails), and protozoans despite evidence of high levels of diversity and endemism in the Dibang River basin.
 - d. Approaches and methods used to analyse field data and produce results are inadequate, not clearly explained and, often, not scientifically recognised. Importantly, species accumulation curves, a key method to analyse and report data on species richness and diversity, have not been prepared for most taxa. Fish is the only taxa for which accumulation curves have been prepared but they clearly show inadequate sampling. Furthermore, nowhere are the links between topography, habitat type, biodiversity presence, local people's priorities and potential HEP impacts clearly established.
 - e. The Report does not refer to recent and relevant peer-reviewed work on social, ecological, physical and geomorphological aspects of the study region, including one by some of the Report's own authors that found tigers within 10 km of the HEP site. Instead, the Report relies on limited, often outdated material.
- 3. *Flawed inference:* Because of serious methodological and analytical deficiencies and exclusion of highly diverse taxa such as insects and arthropods, the Report underestimates the study area's biodiversity values and the HEP's impacts, particularly on range-restricted, threatened and

endemic species. Comparisons with published research from Dibang Valley shows that the Report under-reports hundreds of species of butterflies and other groups of insects, and birds, and tens of species of orchids, mammals and herpetofauna. The report's species checklists contain repetitions, lack of proper taxonomic classification and wrong distributions including 12 species of butterflies that are not known to occur in Northeast India at all.

- 4. *Dibang is exceptionally biodiverse:* Even with the short survey conducted using biased sampling methods, the Report provides direct evidence of 230 bird, 159 butterfly, 112 spider, 51 moth, 31 reptile, 14 amphibian and 21 mammal species. Amongst these are several endemic (e.g. seven species of birds), range-restricted (e.g. six bird and three butterfly species) and threatened (e.g. eight mammal species) species, many of which are included in Schedule I of the Indian Wild Life (Protection) Act, 1972.
- 5. Despite numerous admissions that highlight the species richness and diversity of the region, the Report ignores its own findings to outline mitigation measures for some taxa while observing that "it was not possible to suggest any threatened species and habitat specific conservation plan" for others (e.g. mammals). Firstly, it is not clear on what basis the FAC's singular mandate of 'biodiversity assessment' was converted into a Wildlife Conservation Plan. Secondly, the few mitigatory measures recommended for some specific faunal groups in the form of butterfly, reptile parks and nest boxes cannot be considered as well-designed ecologically meaningful measures to compensate for the local entire ecosystems that provide vital environmental and societal benefits. Overall, this assumes the project as *fait accompli* implying that the Report's findings have no bearing on the FAC's decision to approve the project, ultimately making this exercise appear futile.
- 6. There appears to be a minimization of the negative impacts of the HEP and local concerns about them throughout the Report. The section that relate to assessing socio-cultural impacts of the HEP and suggest mitigatory measure assume a patronizing attitude towards the local Idu Mishmi people and emerge from a lack of a nuanced understanding of socio-cultural dynamics and interdependencies between people and the natural environment. The Report recommends large-scale agriculture and a shift to cash crops, without considering the impact of such large scale (possibly monoculture) cultivation on biodiversity, local livelihoods and well-being. Some of the job opportunities listed such as welder, fitter, plumber, electrician etc. are largely alien to most highland farmers and rests on the assumption that people can make an effortless transition to new livelihoods immediately after the shock of resettlement.

Crucially, studies that inform high-level decision-making on historically significant projects, such as the Etalin HEP (which would be one the largest hydropower projects in the country), must go through a transparent and scientifically recognised peer-reviewed process given the pitfalls, numerous discrepancies and gaps highlighted in this review. Such decisions have irreversible impacts on lives, livelihoods and the environment.

INTRODUCTION AND BACKGROUND

On 28 February 2017, the Forest Advisory Committee (hereafter FAC) met to discuss the 3097 MW Etalin Hydropower Project (hereafter HEP, or 'the project') to be developed by Jindal Power Limited (hereafter User Agency) in Dibang Valley district. In the minutes that were released later (F.NO. 8-20/2014-FC), the FAC found the Environmental Impact Assessment (EIA) submitted by the User Agency "inadequate" and recommended that a "multiple seasonal replicate study on biodiversity assessment of the catchment area" of the 3097 MW Etalin HEP in Dibang Valley district be conducted by "an internationally credible institute". The Wildlife Institute of India (hereafter WII), Dehradun was chosen to conduct the said study (vide letter no. FOR-279/CONS/2010/Vol-I/ 836-40, 23rd June 2017 from APCCF and Nodal Officer (FCA), Arunachal Pradesh). In 2019, the WII produced an extensive Technical Report (TR No/2019/01, hereafter 'the Report') titled 'Wildlife Conservation Plan for the impact zone of Etalin HEP, Dibang Valley District, Arunachal Pradesh'. The Report assesses the status of various taxonomic groups including mammals, avifauna, entomofauna, herpetofauna and flora in the HEP site. It also documents the biodiversity value for and the natural resource dependence of the local Idu Mishmi people in the project site. Finally, it evaluates the impacts of the proposed project on the aforementioned taxa and natural resource needs of the local people and drafts a mitigation and conservation plan along with a financial budget for its implementation.

A group of Indian scientists, including botanists, entomologists, ornithologists, mammalogists, herpetologists, aquatic fauna specialists, geographers, hydrologists, and social scientists, who have multiple years of research experience in Arunachal Pradesh, including in Dibang Valley, have conducted a peer review of the Report. Overall, the review encountered considerable deficiencies and scientific biases in the Report which have compromised the quality and the veracity of its findings and conclusions. Before proceeding to an in-depth taxon-wise review of the Report, below are some key general observations:

- (1) The FAC recommended a "multiple seasonal replicate study on biodiversity assessment of the catchment area". The entire study however appears to have been conducted by the WII over a short period from February 2018 to June 2018, which is under 5 months and cannot be considered a 'multiple seasonal replicate' study. February and March have been taken as winter/premonsoon and April to June as summer/monsoon. These do not represent seasonal patterns in Arunachal which has at least three seasons with distinct rainfall and weather regimes: (a) October to February: relatively dry season/winter; (b) March-April: spring/pre-monsoon; and, (c) May to September: summer/monsoon.
- (2) The Report is a Wildlife Conservation Plan with the final chapter (Chapter 7) dedicated to mitigation and conservation measures. It is not clear on what basis the FAC's singular mandate of 'biodiversity assessment' was converted into a Wildlife Conservation Plan.
- (3) The Report does not refer to recent and relevant peer-reviewed work on social, ecological, physical and geomorphological aspects of the study region, instead relying on limited and often outdated material. The sections below highlight some of the crucial literature that should have been perused.
- (4) Throughout, but particularly in Chapters 6 and 7, the Report segregates the impacts of the project neatly between 'Physical', 'Biological' and 'Social' components. Such a categorization represents a highly narrow, misinformed and flawed understanding of the interconnections between physical, biological and social processes. In developing this schema, where the assumption is that the construction of many components of the HEP will only have biological but no knock-on social impacts (see impact matrix in Table 6.1), the Report seems to have entirely

- ignored vast and widely-popular multi-decadal literature on the interconnections between social and ecological systems (SES) (e.g. Adger ,2000; Young et al., 2006). If changes in ecology indeed have no knock-on impacts on people's social lives, then how does the Report envisage explaining the devastating social, cultural and economic impacts of decidedly natural/ecological phenomena such as climate change, locust infestations, and zoonotic diseases such as the ongoing COVID-19, to name a few.
- (5) Even in the short survey conducted using biased sampling methods within a limited a study area, the Report provides clear evidence for the existence of rich biodiversity. While many more species previously recorded from the study area have been omitted (highlighted in taxa-specific sections), it nonetheless collected direct evidence of 230 bird, 159 butterfly, 112 spider, 51 moth, 31 reptile, 14 amphibian and 21 mammal species. Amongst these, they found several species that are endemic (e.g. seven species of birds), range-restricted (e.g. six bird and three butterfly species) and threatened (e.g. eight mammal species), many of which are included in Schedule I of the Indian Wild Life (Protection) Act, 1972 (IWPA), affording them the highest degree of protection. The Report makes numerous statements that highlight the species richness and diversity of the region repeatedly stressing that it is critical to preserve these sites (e.g., "The presence of Rare, Endangered or Threatened [RET] or species of conservation significance along both the rivers, shows the importance of the habitat and plant species at each project activity site/impact zone for these species. Disturbance of any sort will lead to disappearance of that species..." Page 82). Yet, and ironically, it deliberately ignores these findings to outline mitigation measures for some taxa (e.g., butterfly parks, nest boxes etc.) while observing that "it was not possible to suggest any threatened species and habitat specific conservation plan" for others (e.g. mammals).
- (6) At various points, the Report states that species and habitat specific conservation plans are not possible due to species diversity and their diverse dietary and foraging patterns, yet recommendations are still made for butterfly parks, reptile parks, and habitat restoration that clearly will not replace the loss of natural habitat and address the direct impacts on species. While the appropriateness and viability of these mitigative measures are assessed in greater detail in the taxon-specific sections, this process assumes the project as *fait accompli* implying that the Report's findings have no bearing on the FAC's decision to approve the project, ultimately making this exercise appear futile.

The main text of this review is divided into nine sections, each corresponding to a specific focal area of the Report. It begins with a critique of the criteria used to delineate the HEP's area of impact ('Zone of Influence') and the analytical framework of the Report. Section 2 evaluates the geospatial analyses used to estimate vegetation types. This is followed by seven sections, each presenting a thorough review of field data collection and analytical methodology, suitability and accuracy of the findings and validity of the conclusions for the specific taxon assessed in the Report. While a detailed social science critique of the methodology and results of the socio-cultural surveys is outside the scope of this review, the last section offers a broad response to the Report's findings on socio-cultural value of biodiversity. The review concludes with critical reflections on the reliability of the Report's findings to inform decision-making given the issues identified in prior sections.

Large projects such as the Etalin HEP are multifaceted issues that require attention to many different, yet interrelated, aspects including, but not limited to, socio-cultural realities, political and economic viability, engineering design, the natural environment, and local needs and perspectives. Decision-making on such historically significant projects is, therefore, unarguably complex. This review

underscores the importance of paying attention to scientific processes, findings and realities, which should be integral to informing any development of this scale.

SECTION 1: REVIEW OF ZONE OF INFLUENCE AND ANALYTICAL FRAMEWORK

A detailed analysis of the process of delineation of the study area (the 'Zone of Influence') for biodiversity assessment, field sampling methodology and data analysis framework applied across all floral-faunal groups (Chapters 4 and 5) raises serious doubts over the reliability of the Report's findings on biodiversity richness and the HEP's expected impacts. Furthermore, nowhere are the links between topography, habitat, biodiversity, local people's priorities and potential impacts clearly established. These links are critical to ascertain which habitats and community land-use will be at high risk from landslides or erosion due to project related activities and which of these high-risk areas are occupied by endangered flora and fauna. Thus, the lack of a robust holistic scientific framework risks downplaying the threats to the region's ecology, hydrology and people because of the HEP. Specific comments on the overall lack of scientific rigour in the Report are as follows:

Impacts of HEP extend beyond the Zone of Influence

The Report broadly defines the 'Zone of Influence' (hereafter ZoI) as the farthest influence of the HEP (Page 35). However, this delineated zone of 112 grids (1×1 km each) does not consider areas upstream and downstream of the dams that will be severely altered due to storage of sediments and changes in flow regimes. Neither does it include the environmental impacts of subsurface tunnel construction. Additionally, Dibang valley lies in the zone-V of the earthquake hazard zone making it highly prone to earthquakes and its associated affect like landslides. The report undermines the severity of risks entailed in carrying out massive infrastructural projects in fragile landscapes and presents a myopic perspective that the HEP's impacts on biodiversity are unrelated to human well-being.

Even within the limited ZoI, the Biodiversity Conservation Plan does not account for the damage to the greater landscape by construction of over 50 km of new roads and widening of an additional 30 km of existing roads. The true ZoI due to road construction, quarrying and debris dumping is likely to be much larger because of the extensive slopes on either side of the steep river valley, and their very-high susceptibility to landslides. The landslide susceptibility of the region was not considered despite a global landslide susceptibility map developed by NASA, available at no charge (Stanley and Kirschbaum, 2017) (Page 183). The Report fails to appreciate previous studies globally and in Dibang Valley on the detrimental effects of landslides on forests, rivers, people, and biodiversity (Sassa and Canuti, 2009; Athreya and Sheth, 2016). The areas proposed for land acquisition have "high" and "very high" susceptibility to landslides according to the said global map (Stanley and Kirschbaum, 2017). This is evident from satellite images acquired before and after 2018 showing several ongoing landslides due to road widening and recent extreme precipitation. In addition, effective management of debris is extremely important as waste from an affected site may end up in an unaffected site thus extending the ZoI. Therefore, the ZoI appears greatly under-defined and not based on a careful consideration of topographical, hydrological, anthropogenic and geological factors known to impact mountain ecosystems.

Inadequate sampling, yet Dibang Valley is rich

The overall biodiversity of the area is several orders of magnitude larger than has been reported (see below) since the study does not appear to have taken microhabitats into account. A grid size of 1×1 km

may not be appropriate for all taxa and the Report gives no justification for such a study design. Smaller taxa need to be sampled for richness at a much finer spatial scale that adequately samples all habitats, micro-habitats, elevations and stream orders. A nested survey design may be best to survey multiple taxa.

Species accumulation curves are standard practice in biodiversity assessments as they provide an estimate of the total species richness as a function of area and time, and indicate the adequacy of a survey in representing the fauna of a particular area. Apart from species accumulation curves for fish, the Report does not present these curves for most other taxa (Page 62). The study also focuses on largely diurnal species (except for mammals). The sampled grids for all taxa (approximately 17 grids for plants, 26 for fish, 32 for mammals, 43 for entomofauna, 59 for birds were sampled out of 112) were restricted to areas that are accessible (along Etalin-Anini and Etalin-Maliney road), disturbed and designated for land acquisition. Given Dibang's challenging mountainous terrain, sampling may not be possible everywhere; however, this drawback was not accounted for statistically or acknowledged in the report. Thus, species richness is expected to be high for sampled grids and low for unsampled grids (Page 53). Despite these statistical flaws and deficiencies in sampling strategy, coupled with a less-than-ideal sampling season, the Report finds endemic and RET species even in ecologically disturbed areas such as roads, contradicting its claim that the impact potential in undisturbed areas would be low (Map 6.1; Page 148).

Importantly, within the ZoI, the grids that were not surveyed were assigned no biodiversity values. Yet, the potential impact of the HEP on those grids was ascertained to be "low" (Page 148). This approach is not based on any of the scientifically published methods that are used to score the impact on biodiversity due to HEPs.

Mid-elevations will be richest in Dibang Valley

Species richness peaks at different elevations for different taxa. These are well established ecological rules (Colwell and Lees, 2000; McCain and Grytnes, 2001). However, the study does not sample across different elevations to ascertain species richness-elevation relationships. Prior work in Western Arunachal demonstrates that species richness increases with elevation in certain taxa (Marathe et al., 2020; Sheth 2020 pers. comm.). Similarly, Roy et al. (2018) surveyed an elevation range from 200–3500 m in Dibang river basin documenting 38 amphibian species, 36 of which were found between 800–1500 m, the elevation range where the proposed HEP and associated infrastructure will be located. Long-term amphibian studies in Western Arunachal also show this mid-elevation zone to contain the highest number of species (Athreya and Sheth, 2016). Further, the mid-elevational peak in species richness observed in the Eastern Himalaya also suggests that these regions act as important biogeographic transition zones, where taxa from different biogeographic regions overlap (Kreft amd Jetz, 2013). The lack of sampling across multiple elevations in the ZoI may have likely underestimated the biodiversity value, evolutionary importance, and impact assessment of the HEP in the study area.

SECTION 2: REVIEW OF GEOSPATIAL DATABASE

The geo-spatial database has several methodological shortcomings with respect to the quality of satellite imagery and the image classification process. More importantly, the land-use land-cover data have not been integrated with datasets on biodiversity richness, geohazards and topography to

understand the importance of landscape drivers in sustaining high-levels of biodiversity in the region. This requires longer data collection over larger region to develop empirical multi-level models capable of comprehensively assessing the true extent of impacts of the proposed HEP. Specific issues with geo-spatial analyses in the Report are detailed below:

Satellite image analysis and interpretation

- While the Report does not explicitly state how many bands are used for land-use land-cover classification, it appears that only two bands (out of 9 medium-resolution bands) of Sentinel-2 and two bands (out of 9 medium-resolution bands) of Landsat 8 are used (Page 63). This is important as the image-classification accuracy tends to improve as more bands are used (Forkuor et al., 2018). Further, the images are only from the post-monsoon season when the sun-angle is low creating larger shadows obscuring many slopes (Cingolani et al., 2004). These shadows reduce the effective area that can be classified.
- The Report does not clarify how different land-use and land-cover categories are defined (e.g. what was the basis of defining a particular habitat as evergreen forest). Distinguishing between evergreen and/or secondary forest is difficult in Arunachal and even more so in this season especially without a robust ground-truth sampling design. While the Report states that ground-truthing data were collected, no such data, including the number of pixels for each land cover category, are presented for scrutiny (Page 60).
- The NDVI/MSAVI indices used in the Report are not ideal for image classification when used on their own as they simply provide an index of vegetative biomass (Jackson and Huete, 1991). For areas with high vegetation biomass, the more sensitive EVI (Enhanced Vegetation Index) is recommended. Further, the recommended best practices for land-use and land-cover classification are to provide a statistical measure of the performance of classification models (Olofsson et al., 2014). However, the Report does not provide any details or statistics (e.g. confusion matrix, commission-omission errors) to allow the accuracy of the classified imagery to be assessed.
- Due to its narrow-minded focus on the individual components of the biodiversity, the report fails to look at the impact of the proposed activities on the ecosystem processes that sustain the rich biodiversity. It is also ignores the potential impact of climate change on ecosystem processes and biodiversity in the region. It misses the opportunity to utilise various freely available gridded climatic data products (precipitation, temperature etc.) to further explore the nature of interlinkages between climate and biodiversity in the region and how such a megaproject will exacerbate the potential impacts of warming, precipitation changes, phenological shifts and increase of extreme events on the flora and fauna of the region.

SECTION 3: REVIEW OF FLORA

Despite limited long-term botanical research in Arunachal Pradesh, the state is known to host an outstanding floral diversity (Rao and Hajra, 1986). Dibang Valley hosts several endemic plants, many of which are new to science and have been recorded from within the ZoI. Following are some noteworthy plants recorded in Dibang Valley:

- 1. New species of *Impatiens* (commonly known as Balsams) such as *Impatiens ashihoi, Impatiens albopetala, Impatiens dibangensis* and others. (Gogoi and Borah, 2015; Gogoi and Borah, 2016)
- 2. Araceae members (Aroids) such as *Arisaema gracilentum, Colocasia dibangensis*, and several others have been described as new to science, distribution and status of which are yet to be studied properly (Gogoi and Borah, 2013; Bruggeman, 2016).
- 3. *Sapria himalayana*, called 'a floral wonder', has also been recorded from Dibang Valley (Hohl and Sebastian, 2014).
- 4. Members of the family Gesneriaceae are found in great diversity in Dibang Valley including many with a high ornamental value. The Report mentions *Henckelia mishmiensis* (Chirita mishmiensis) which is a Dibang Valley endemic that only grows in a specific niche.

Incomplete documentation of floral wealth

A mere 1.19 % of the ZoI was sampled for its floral diversity. The ZoI has 112 grids (1x1 km), of which 133 vegetation plots of 10 x 10 m were sampled. Yet, even with such limited sampling, the Report mentions that 398 plant species belonging to 106 families and 286 genera were encountered indicating very high floral diversity. However, even this is likely to be a significant underestimate based on the findings of previous studies (e.g. Liden and Adhikari, 2019) that have reported numerous new records for India from the high elevation areas of Dibang Valley, postulating that a similar number of new reports are expected from mid-to-low elevation areas. In particular, the tree diversity estimate mentioned in the Report seems low when compared to tropical and subtropical forests from other studies in neighbouring areas within the state (Borah and Garkoti, 2011; Dutta and Devi, 2013a,b; Sarkar and Devi, 2014; Sarma and Borah, 2014; Borah et al., 2016; Saikia and Khan, 2016; Bora and Bhattacharyya, 2017; Borogayary et al., 2017; Barua et al., 2018). Since Dibang Valley is a hotspot for discovery of new plant species, the herbarium species collected during fieldwork should urgently be reexamined (if they have been retained) as many of these unidentified specimens could turn out to be new to science. Much of this identified and yet-to-be-identified botanical diversity is at risk from the proposed HEP and the Report does not do an adequate job of identifying these potential impacts.

Endemic orchid diversity not adequately sampled

The Report similarly underestimates orchid diversity identifying only 35 species for the ZoI's. All of the recorded orchids are extremely common species and a comprehensive survey with taxonomic expertise will reveal more species, including those that are rare and endemic. Existing studies have already documented 117 species of orchids belonging to 44 genera from Dibang Valley. Among these, 86 species are epiphytes, three are epiphytic as well as terrestrial, and 31 species are terrestrial including four saprophytes (Bhaumik and Pathak, 2010). More recent surveys have reported up to 200 species with the highest diversity found in low-to-mid elevations areas similar to the ZoI (Gogoi 2020 pers. comm.).

Under-reporting ethnomedicinal knowledge

The Report records only nine species of medicinal plants used in the area (Table 5.54). This is difficult to believe as prior research has established that the Idu Mishmi have a vast knowledge of medicinal plants and use them regularly for a variety of ailments. Haridasan et al. (1995), reported more than 500 species of medicinal plants from Arunachal Pradesh. Although ethnobotanical studies have been scarce

in the Dibang Valley, recent work has found 36 species in Lower Dibang Valley (Tangjan et al., 2011), more than 80 species between the two Dibang districts (Shankar and Rawat, 2008) and 55 species within the Dibang Biosphere Reserve (Ghosh et al., 2014).

SECTION 4: REVIEW OF ENTOMOFAUNA

Recent reports of decline in insect populations worldwide are alarming (Hallmann et al., 2017; Leather 2018; Sánchez-Bayo and Wyckhuys, 2019), not least because insects provide crucial pollination services. Further, 73% of the world's cultivated crops are pollinated by honeybees (Raj et al., 2012). Arunachal Pradesh supports a rich diversity of bees with about 49 species recorded to date in limited surveys. These include the family Megachilidae, genus Ceratina and 13 other bee species which were recently recorded for the first time (Saini et al., 2018). Very limited work exists on the honeybees of Dibang Valley and no comprehensive research has been done on the numerous other wild bee species of the district. So far only *Apis laboriosa*, *Apis dorsata* and *Apis cerana* have been recorded from Dibang Valley (Gogoi et al., 2018).

Members of the order Lepidoptera, which includes butterflies and moths, are another diverse group of significant pollinators, second only to bees. The Lepidoptera, too, have experienced sharp population declines (Fox 2013; Langevelde et al., 2018; Thogmartin et al., 2017). Beyond being a key pollinator, this insect group is also a significant bio-indicator of climate change, deforestation and habitat degradation. Lepidopterans are also prey for birds, mammals and reptiles, and their larvae are mostly plant herbivores. Finally, due to a paucity of long-term research across Arunachal Pradesh, experts believe that numerous butterfly and moth species new to science are yet to be described from this landscape.

Dibang Valley as an important area for endemic and rare entomofauna

Dibang Valley is believed to have more than 500 species of butterflies. Many subspecies of butterflies occurring in S.E. Tibet and Yunnan also occur up to Dibang Valley (for example, the nominotypical subspecies of Chocolate Tiger Danaus melaneus butterfly is distributed in S.E. Tibet, Yunnan and Dibang Valley). The Brahmaputra river basin has been a barrier to the dispersal of many butterfly species resulting in high rates of endemism and speciation in Dibang Valley. For example, the Dibang Valley endemic Roy's Argus Callerebia dibangensis was only described in 2013 while many hairstreaks, rings, skipper butterflies etc in the region are yet to be described. This rich diversity of butterflies and their colourful unique patterns (like the Northern Jungle Queen) have found a place in Mishmi lives and some of their traditional weaving patterns are inspired from butterflies (Elwin 1959). Some other range-restricted butterflies of Dibang Valley include False Tibetan Cupid Tongeia pseudozuthus, Chinese Silverline Spindasis zhengweilie, Khaki Silverline Spindasis rukmini, Evans Silverline Spindasis evansii, Tiger-mimic Admiral Limenitis rileyi, Mottled Argus Callerebia narasingha, Tibetan Brimstone Gonepteryx amintha thibetana, Grey Commodore Bhagadatta austenia purpurascens, Abor Freak Calinaga aborica (see Appendix I for an updated butterfly checklist for Dibang Valley). All of these species, including endemics such as Callerebia dibangensis, occur in the elevational range of Etalin HEP raising serious concerns of the project's impact on their survival. Concerns and deficiencies in the entomofaunal assessment of the Report are detailed below with a specific emphasis on Lepidopterans.

The report's account of (159 species of butterflies, 11 species of odonates and 51 species of moths) is low and may not be a true representation of the study area's species richness. There are many threatened and endemic entomofauna even in the ZoI that have not been reported. Further, many species mentioned in the Report have been erroneously assigned to different taxonomic categories. Despite this, recording 200+ species of entomofauna within a limited sampling period and effort underscores the immense evolutionary and ecological wealth of this area. Our specific comments are as follows:

- Butterflies: 354 species of butterflies have been reported from Dibang Valley in the last 10 years (Gogoi 2020, unpublished data.), while up to 500 species are believed to exist in the region. However, the Report mentions a mere 159 species from the project site. The riparian habitat within the ZoI is likely to have around 290-300 butterfly species based: (1) a 4-month survey in a similar habitat in Lower Dibang Valley that recorded 294 species (Gogoi 2012); (2) surveys in comparable habitats in other parts of Arunachal Pradesh where up to 700 species have been recorded (Sanjay Sondhi, pers. comm, unpublished report).
- Macro-invertebrates: Benthic macro-invertebrates are considered one of the most important bioindicator groups for freshwater ecosystems. The Report poorly studies these key taxa identifying up to family level only. Further, each family is considered a different taxon (Tables 5.48 and 5.49). This is a gross underrepresentation of the actual diversity as each family contains several species. Using these family-level as opposed to species-level data, the richness of EPT taxa (Ephemeroptera, Plecoptera, Tricoptera) has been plotted in Figures 5.1 and 5.2, erroneously obtaining a very low number of 7-8 in all sites. This is misleading and an inaccurate representation of actual species richness at these sites.
- Odonata: The Report states that eleven odonate species occur in the ZoI's riparian habitat. This is a shockingly low number given that other studies, even from urban areas have reported many more species. More than 60 species are expected to be found in the Etalin area with adequate sampling and correct identification (Arajush Payra 2020 pers. comm.). The Report records only two damselflies, which is a serious underestimate for Dibang Valley. Even common species observed at virtually all water bodies across India, including across Dibang Valley such as *Ischnura rubilio*, *Ceriagrion coromandelianum*, *Calicnemia miles* and *Pseudagrion rubriceps*, have not been included, indicating inadequate sampling. A species new to India, *Echo perornata* recently reported from Hunli-Anini road in Dibang Valley (Gogoi and Payra 2019), does not make it into the Report as well. As for dragonflies, eight families are known to occur in India, all of which are found in Arunachal Pradesh as well (Subramanian and Babu, 2017). However, only the most common family Libellulidae is reported. The dragonfly family Gomphidae and damselfly family Lestidae are incorrectly reported with benthic invertebrates (Page 123-124) and not with the odonates species list (Page 255).
- Moths: The report's account of 51 moth species is an extremely low number for this group. Around 10,000 species of moths occur in India and the Etalin area is likely to have up to 600-700 species. In other similar habitats, such as in Eaglenest and Talle Valley wildlife sanctuaries (WLS), the list of identified moth species exceeds 400 (Sanjay Sondhi, pers. comm, unpublished report), with at least a similar number of additional species that are believed to be recorded if long term surveys are conducted. Many species in this habitat type and elevation are yet to be discovered. For example, in 2017, the Apatani Glory *Elcysma ziroensis*, a species new to science was described from Tale Valley WLS. It remains the only known location in the world that this species is known from. Similar moth diversity is expected from the project site.

The Report has entirely ignored the evaluation of butterflies and other entomofauna using their criteria of 'Rare Endangered and other Threatened' species (RET). For example, Himalayan Mottled Argus *Callerebia narasingha narasingha* (Moore, 1857), included in the report's butterfly checklist, is endemic to Eastern Himalaya and would qualify as an RET species. Similarly, a Dibang Valley endemic - Roy's Argus *Callerebia dibangensis* - likely to occur in Etalin given the elevation, has not been assessed.

The review of secondary literature is rather inadequate and important references have been left out. Some notable published omissions include several populations of range-restricted butterflies such as the False Tibetan Cupid *Tongeia pseudozuthus* (Huang, 2001), known to occur between Hunli-Anini; Tibetan Brimstone *Gonepteryx amintha thibetana* reported from Dri valley and Mayodia-Anini road (Sondhi and Roy, 2013; Das and Gogoi 2020 pers. comm.); and the Blue Posy *Drupadia scaeva cyara*, which was recorded for the first time in India from the area around Etalin (Das et. al., 2018). None of these important references have been included effectively downplaying the potential impacts of the HEP to these extremely rare and endemic species [Page 194].

Ineffective mitigation plans

The Report has indicated that four to five 'Open Butterfly Parks' will be set up as part of a Species Group Conservation Plan to attract a portion of the 159 species of butterflies identified. However, the host plants of these threatened and endemic butterflies are still unknown, questioning the viability of such measures. Baseline data on larval host plants for many of Dibang's endemic and range-restricted species, such as *Callerebia dibangensis*, are still missing. The purpose of a butterfly park will be defeated if the only known habitat and host plants for these endemics are lost. In any case, the establishment of a butterfly park cannot compensate for the direct loss of the habitat/microhabitats of butterflies and the consequent impacts on their population, persistence and survival. It also does not suggest any mitigation for any other entomofaunal groups that were assessed and will be affected.

Additional errors in entomofauna sections

There were also several errors in the report, 12 species of butterflies mentioned in the checklist are not distributed in Northeast India at all. Most of these species either occur in the Western Himalayas or Peninsular India. Some other species in the checklist are doubtful as their presence in Arunachal Pradesh is unlikely and has not been confirmed. Further, the butterfly checklist has numerous errors in assigning correct family names, while one species has been repeated twice with different generic combinations. If the researchers had consulted existing literature, a more accurate account could have emerged. These details are mentioned below:

- The extremely rare Scarce Jester *Symbrenthia silana* is mentioned in the Report as Scarce Jester '*Symbrenthia silana* de' [Page 172]. Firstly, the 'de' should have been 'de Niceville'. Secondly, the species is endemic to Eastern Himalaya, which has not been highlighted, which would make it an RET species.
- Faulty distribution: A total of 12 species of butterflies mentioned in the report's checklist do not occur in Northeast India at all. Most are distributed in the Western Himalayas or Peninsular India (Gasse, 2013). These species are:
 - 1. Heliophorus oda (Hewitson, 1865) Eastern Blue Sapphire
 - 2. Curetis thetis (Drury, 1773) Indian Sunbeam
 - 3. Lycaena phlaeas Small Copper
 - 4. Euploea crameri nicevillei Spotted Black Crow

- 5. Euploea tulliolus Dwarf Crow
- 6. Ypthima asterope mahratta (Moore, 1884) Common Threering
- 7. Ypthima sakra sakra (Moore, 1857) Himalayan Fivering (parasakra occurs in NE India)
- 8. Dodona durga durga (Kollar, 1844) Common Punch
- 9. Papilio crino (Fabricius, 1793) Common Banded Peacock
- 10. Pareronia hippia (Fabricius), Common Wanderer
- 11. Pareronia sp. Dark Wanderer
- 12. Pieris rapae meleager (Hemming, 1934) Small Cabbage White
- The following species reported as occurring in Dibang Valley are doubtful:
 - 1. Taractrocera maevius Common Grass Dart
 - 2. Graphium megarus megarus (Westwood, 1844) Assam Spotted Zebra
 - 3. Gonepteryx rhamni nepalensis (Doubleday, 1847) Himalayan Brimstone
 - 4. Charaxes moori (Distant, 1883) Malayan Nawab
- The following species are wrongly placed under Family Papilionidae; they should be under Family Pieridae
 - 1. Appias lalage lalage (Doubleday, 1842) Spot Puffin
 - 2. Colias fieldii fieldii (Menetries, 1855) Dark Clouded Yellow
 - 3. Gandaca harina assamica (Moore, 1906) Tree Yellow
 - 4. Gonepteryx rhamni nepalensis (Doubleday, 1847) Himalayan Brimstone
- The following species are wrongly placed under Family Pieridae; they should be under Family Riodinidae
 - 1. Abisara neophron neophron (Hewitson, 1861) Tailed Judy
 - 2. Dodona adonira adonira (Hewitson, 1865) Striped Punch
 - 3. Dodona dipoea dipoea (Hewitson, 1865) Lesser Punch
- The following species are wrongly placed under Family Nymphalidae; they should be under Family Papilionidae
 - 1. Papilio helenus helenus (Linnaeus, 1758) Red Helen
 - 2. Papilio paris paris (Linnaeus, 1758) Paris Peacock
 - 3. Papilio polytes romulus (Cramer, 1775) Common Mormon
- Two species mentioned are synonyms of each other and should not be listed separately. *Precis iphita* is a junior synonym of *Junonia iphita*
 - 1. Junonia iphita iphita (Cramer, 1779) Chocolate Pansy
 - 2. Precis iphita iphita Chocolate Soldier
- Two out of the four photographs of dragonflies are wrongly identified (Page 91).
 - 1. The photo labelled as *Orthetrum taeniolatum* is an *Orthetrum luzonicum* immature male.
 - 2. The photo labelled as *Pantala flavescens*, one of the most common species of dragonflies worldwide, is a female *Orthetrum pruinosum*.
- *Calicnemiinae* reported as the family for the two species below is actually a subfamily. The correct family name is *Platycnemididae* (Subramanian and Babu, 2017).
 - 1. Calicnemia miniata (Selys, 1886)
 - 2. Calicnemia sp. 2

In conclusion, the Report appears to consider the importance of butterflies (and other insects) only in terms of pollination services ("it is very important to conserve butterfly species, as they help in pollination" [Page 172]). It must be highlighted that the butterflies in Dibang Valley are important not

only because they are essential pollinators, but also because they are key prey for other species, have cultural significance, and are vital for eco-tourism and have existence value.

SECTION 5: REVIEW OF AQUATIC BIODIVERSITY

Arunachal Pradesh's extensive river system sustains well over 250 species of fish from 105 genera, 34 families and 11 orders underscoring its evolutionary diversity (Bagra et al. 2009; Gurumayum et al. 2016). Of these, 32 species are endemic to the state (Gurumayum et al. 2016). Many fish species new to science have been reported from Arunachal Pradesh within a short span of time; most from the Siang, Noa-Dihing, Dibang and Subansiri rivers and their tributaries.

Underreporting fish species from Dibang Valley

In the Dibang River basin, Darshan et al. (2019) recorded 32 species, many of which were documented within the past 10 years, suggesting the potential of new discoveries from this species-rich region. However, the Report records only 12 species from the ZoI (including both Dri and Talõ basins) suggesting poor sampling. While the Report does plot the species accumulation curve for fish, the curve does not plateau indicating several undiscovered species in unsampled stream orders. Ichthyofaunal studies in Dibang Valley have been limited and only recently have researchers started to document the species for this region (see Appendix II for a list of 8 new species that have been described from this region within the last 10 years).

Dibang Valley harbours many endemic species, especially the highly sensitive, stenotopic Glyptoternoids like *Exostoma*, *Creteuchiloglanis*, *Parachiloglanis*, *Pseudolaguvia* and *Pseudocheineis*, but the Report only acknowledges one RET species (*Schizothorax richardsonii*), It further argues that other recorded species might not have global significance with reference to their threatened status, but they might have high regional importance. However, the fact is left out that the extent of the current knowledge of these species' ecology and conservation status is very limited making it difficult to make definitive assessments.

Threats to aquatic fauna underassessed

The Etalin HEP poses serious threats to the aquatic fauna of these high-altitude rivers which have not yet been adequately explored. The threats to migratory fish such as *Schizothorax* and *Tor* sp remain uncertain as there is inadequate knowledge on their migratory ranges. The location of the HEP at an altitude of 700 m is favourable for many "Intermediate Forms" of hill stream fishes including *Schizothorax*, some *Garra*, *Tor*, *Bangana*, *Neolissochilus*. These are potential "Cold Water Fishes" that migrate downstream to mid-to-low altitudes during winter. No mitigation plans are recommended to allow for the upstream to downstream movement of these fish species through species-specific fish ladders which should be based on a thorough study of species biology.

Fishing through traditional traps has also been an important source of dietary protein for the indigenous Idu Mishmi people, the availability of which may be affected by the disturbance related to the HEP. Further, the delineated ZoI does not take into account that areas upstream and downstream of the dams that will be severely altered due to storage of sediments. Once the sediments are trapped, the river downstream will turn sediment hungry, eroding the banks' riverine areas and removing spawning gravels used by fish (International Hydropower Association, 2019).

Inadequate mitigation plan for hydrology

Hydrological monitoring of the streams to assess impacts of road construction, habitat modification and management of aquatic biodiversity, has not been recommended. This is critical to measure low flows and water quality changes pre- and post- dam activities (Page 15). In addition:

- The mitigation plans recommend that critical minimum flows (e-flows) should be maintained in all the streams and the main river. However, they fail to detail the methodology to estimate the same (at different time of a year) for streams/rivers of different sizes and the fact that hydrological monitoring is crucial for deriving e-flows for different aquatic biota.
- There is a proposal to "prevent the impact of road-cutting through the construction of culverts/small dams across all the streams cutting across by the proposed road is an effective mitigation plan". However this is only feasible for a few streams. Most first order streams do not get individual culverts and are diverted to the nearest culverts. This increases the runoff in the stream leading to higher erosion and bank instability (Page 200).
- The compound effects of ongoing landslides and excessive dumping of debris directly into the rivers due to highway construction that have already compromised stream health and productivity of other aquatic habitats, should be explicitly accounted for (Sassa and Canuti, 2009).
- The impact of the project on long-term sediment dynamics downstream are not addressed although short term effects of increased sedimentation during construction and immediate post-construction phase are addressed to some extent.
- The impact of altered flow and sediment regimes on riparian vegetation are not addressed.

SECTION 6: REVIEW OF AVIFAUNA

Even within Arunachal Pradesh (which has the second highest number of bird species globally), Dibang Valley is special for its birds. Four hundred and thirty-four species have been reported from Dibang Valley (see Appendix III for a checklist of birds of Dibang Valley). The Black-headed Greenfinch (*Chloris ambigua*) and Elliot's Laughingthrush (*Trochalopteron elliotii*) are recent new records for India and the Rusty-throated Wren-Babbler (*Spelaeornis badeigularis*) is a highly range-restricted and threatened species that was rediscovered from the area in 2004 after almost 60 years. The species is endemic to the region and found nowhere else in the world.

In addition, Arunachal Pradesh, including the Dibang Valley, has the highest richness of riverine birds on Earth. These species are entirely dependent on rivers and riverbank habitat of the Dibang and its tributaries. These discoveries and rediscoveries underscore that even relatively well-known faunal groups such as birds are poorly studied in Dibang Valley. While we found atleast two identification errors in the photographs (Rosy Pipit has been wrongly identified as Olive-backed Pipit and Yellow-bellied Fairy Fantail, a common bird in this area, has been wrongly identified as the Yellow-throated Fulvetta), our major comments are as follows:

Missing the elevational migrants

The Report studied the birdlife along the Talõ and Dri rivers using point counts and line transects during February to May 2018. While the objective was to conduct a multi-season study, the actual field work

(February-May 2018) was done in a single season and is a relatively short time to assess birdlife of any Himalayan region, especially the species-rich Dibang Valley. First, most species in Arunachal Pradesh are elevational migrants, breeding at higher elevations and spending the winter lower down. Therefore, a study restricted to four months cannot provide a complete picture of the region's birdlife. Second, the Eastern Himalayan bird community is exceptionally diverse, and requires identification by both sight and sound. Over such a limited sampling period, it is likely that a significant proportion of species might not have been recorded by the study.

Underestimation of species, abundance and threatened species

The Report of 230 species from the study area is likely to be an underestimate, because of the lack of a multi-season study (as outlined above), and species present were not recorded during the survey because of poor detectability. The Report specifically outlines that "the vegetation was dense and the detectability (of birds) was less...". Given the low detection probability and large number of detections of singletons and doubletons, the Report did not incorporate a formal statistical technique that could potentially account for the number of species "missed". There are likely to be threatened species such as the Blyth's Tragopan and Beautiful Nuthatch in the area. Further surveys are required to systematically determine their presence in the landscape. No species accumulation curve given to show whether sampling was adequate.

On one hand the Report outlines that detectability was poor due to dense vegetation, yet goes ahead and classifies abundance of all birds that were recorded as very low or low. While the team has used point counts and line transects for the surveys, the number of repeats carried out have not been explicitly mentioned. The low abundances for birds inferred in the Report may be an artefact of low detection probability. Given low detection probability of species, abundance cannot be inferred without statistically accounting for the detection probability.

Contradictions and inadequate mitigation plans

The Report makes numerous statements that highlight high bird species richness and diversity of the region. One striking and key point is that even with this four-month study combined with effort/sampling limitations, the Report finds high bird species richness including endemics/range-restricted species within the ZoI and repeatedly stresses that it is critical/crucial to preserve these sites several times in The Report. Despite their own findings of the importance of biodiversity (in this case, birds), they suggest mitigation/conservation plans that clearly will not address the loss of these natural habitats and the direct impacts on bird populations. For instance, there are no mitigation measures suggested for the loss of habitat for riverine birds.

They also make contradictory assertions — where they admit that it is not possible to suggest any threatened and habitat specific conservation plans (which is true), and then subsequently suggest "*Habitat Rehabilitation and Restoration Plans*" that would purportedly enhance the overall habitat quality and benefit species of conservation significance.

Other limitations of habitat and species-specific plans

To mitigate or compensate the impacts on birds, the Report suggests the installation of nest boxes that the authors suggest will help the 32 cavity-nesting species of the 230 bird species recorded. This mitigation plan has several flaws, limitations, several of which are outlined below:

Cavity-nesting birds cannot just make do with some artificial nesting habitat, they need food, foraging areas and habitat to survive and breed. If the habitat (with nearly 2.8 lakh trees and other vegetation, associated features) are lost, birds will be directly impacted including the cavity-nesting species (which belong to a diversity of feeding guilds). The direct loss of the habitat/trees and submergence would reduce the population of birds. This cannot be compensated by only installing some nest boxes in adjacent areas.

The suggestion to augment only one type of breeding habitat (for cavity-nesting birds) by introducing nest boxes is an ecologically flawed idea as it may affect the population dynamics of other birds (assuming it is implemented and succeeds). There is no understanding of the abundances/population dynamics of birds in that area and no information on the existing availability of breeding habitat for cavity-nesting or other birds.

The 32 cavity-nesting species listed in the Report range from diurnal/nocturnal species, with diverse diet/foraging strategies and a range of body sizes. The birds range from tits, nuthatches, woodpeckers, barbets, to trogons and hornbills and raptors such as kestrels, hobby/owls. The design and placement of nest boxes for any particular species would require a much greater ecological understanding of the needs/requirements of specific species than one simple design based on differing entrance hole sizes catering to all species. The internal dimensions and specifications inside the nest box will also vary between different cavity-nesting species based on body size and other criteria.

The Report recommends that initially 400 such nest boxes should be set up in 2 locations (200 each) in forest patches around the staff colony and office premises. This proposal seems to be suggestive of an experimental framework and cannot be considered a mitigation strategy.

However, in other places, it is also suggested as a mitigatory measure with the idea that this would help cavity-nesting birds. This is misleading and incorrect. Till date, there is no successful project that shows the use and efficacy of nest boxes for hole-nesting bird species in India. In India, it has been tried for a handful of bird species in urban areas and in a few places for some hornbill species where years of ecological research have shown a limitation in the availability of natural cavities. Several of these projects especially for Asian forest hornbills have not yielded any significant results except in a couple of sites where it has needed careful and dedicated long-term engagement. In the case of hornbills or other large hole-nesting birds, installation and design of nest boxes is not an easy task, it requires multiple skills and equipment. In addition, nest boxes made of wood (as cursorily shown in the report) are also not at all ideal in places like Arunachal with high humidity and rainfall, where the boxes will rot after the first two years. Nest boxes often take a long time to be accepted and used by birds.

Many Environmental Management Plans of proposed hydel projects make this generic recommendation of installing nest boxes as a somewhat easy quick fix solution to compensate for the loss of birds/habitat. It would be very instructive to know of even a single example where this recommendation has been implemented in India in any project as a mitigatory measure.

SECTION 7: REVIEW OF MAMMALIAN BIODIVERSITY

Dibang Valley hosts an extremely rich mammalian assemblage with reports of as many as 75 species from the greater landscape of Dihang Dibang Biosphere Reserve (Choudhury, 2008). To assess the ZoI's mammalian diversity, the Report used a combination of camera traps and secondary sources. It claims evidence of 21 species within the ZoI from direct and indirect sources. Overall, flawed methodologies have been adopted to create an inadequate and incomplete assessment of the area's mammals and the HEP's impacts on them. In compiling data on mammals, the Report ignored key published checklists from the region (e.g. ZSI, 2006; Choudhury, 2008) instead opting for the EIA report (2015) that the FAC (2017) deemed "completely inadequate" leading to the commissioning of the current study (see Appendix IV for an complete checklist of mammals of Dibang Valley). They seem neither to have taken note of globally unique evolutionary phenomena reported from Dibang Valley (e.g. six different colour morphs of the Asiatic golden cat from the same region [Nijhawan et al., 2019]), nor the seven species of gliding squirrels, at least one of which (Mishmi Hill giant gliding squirrel) is endemic to the Dibang River basin (Krishna et al., 2016). The sections below discuss the various deficiencies and shortcomings in field and analytical methods, results and finally, the Report's conclusions on mitigation measures for mammals.

Flawed data collection methodologies

In Section 4.1.1.5 (Page 48), the Report states that "each camera was deployed for an average of 20-30 days" without explaining how this sampling period responds to the Objective (a) (Page 28) "covering multiple seasons". Firstly, a period of 20-30 days appears inadequate to sample a range of species, many of which are wide-ranging (Wearn and Glover-Kapfer, 2017). Secondly, there is no mention of how this sampling period is divided across different seasons as temporal replicates. Even if one assumes that 30 days were distributed equally across the two seasons identified in the report, a period of 15 days at any location is extremely unlikely to provide accurate estimates of species richness, distribution, and abundance, particularly for wide-ranging animals such as tiger, wild dog, and clouded leopard. Finally, mammals are known to change their distribution patterns based on resource availability in response to seasonal and altitudinal variation. Many mammals in Dibang Valley including Mishmi takin, red goral undertake altitudinal migrations (Choudhury 2008). Short survey durations restricted to specific seasons are sure to underestimate mammal presence.

The description provided under 'Random sampling' (Page 48) does not correspond to any acceptable ecological sampling method. No rigorous and robust inference can be drawn on species absence from a sampling approach that conducts 'opportunistic surveys based on information given by local people'. Relying entirely on the information provided by local people, though valuable, is likely to bias species capture probabilities, in particular for wide-ranging species such as large carnivores that may avoid human settlements (Schuette et al., 2013).

The Report claims to have conducted camera trap surveys in 53 sq. km of the 112 sq. km demarcated ZoI divided into 1x1 km grids (Page 48). This means that 48.18% of the ZoI was sampled. There are several concerning issues with the sampling methodology:

• All of the grids sampled are concentrated in the immediate vicinity of the river, human settlements and the district road. No grids higher up on mountain slopes within the ZoI were surveyed. This survey design is likely to have favoured the detection of species that are either found close to human settlements (e.g. rodents and small carnivores) or are more likely to visit

- exposed riverbeds (such as otters and small cats), effectively excluding a range of species found farther away from human settlements.
- The Report does not provide the GPS coordinates of camera trap locations. However, Map 4.5 makes it clear that most of the cameras were placed within the roughly 32 of 112 grids, clustered close to the river, roads and settlements. The Report provides no rationale for purposefully selecting sampling grids and camera locations within them in areas known to be impacted by human presence, while leaving a significant majority of the ZoI unsurveyed. Furthermore, it is unclear how the Report concluded that an area of 53 sq. km was surveyed when so few grids have been effectively sampled.
- There is no mention of the minimum distance between two camera trap locations, therefore it is not possible to determine whether spatial autocorrelation in the photocapture data skewed estimates of the species richness and relative abundance.

A short survey duration coupled with non-representative sampling that unequally distributed sampling effort within a relatively small area (53 sq. km) render this study's findings on the study area's mammalian diversity inadequate. Yet, despite these serious methodological flaws, the Report recorded 21 species of mammals, including the Critically Endangered Chinese Pangolin, and seven other RET species pointing to the ZoI's importance for diverse, rare and threatened mammals.

Unscientific data analysis methods

The biased sampling strategy adopted in the Report does not meet the assumptions necessary to produce reliable estimates of species richness, distribution and abundance (Wearn and Glover-Kapfer, 2017). Consequently, richness and abundance analyses reported here (Page 122-132) carry little significance. Yet, if one assesses this section on its own merit, there are several concerns. Most importantly, the Report does not specify which method was employed to calculate species capture frequencies: 30-minute interval (O'Brien et al., 2003), 'independent encounter' (Rowcliffe et al., 2008) or another method. In addition to this key omission, there are following shortcomings:

- The Report does not consider differences in species detection probabilities and abundances (i.e., assigning the same weightage to captures of rare species with large home ranges, such as Asiatic wild dog and Asiatic black bear, and those with smaller home ranges, such as Himalayan palm civet and yellow-throated marten) when comparing species capture frequencies against one another. Meaningful comparisons in abundance across species cannot be made without accounting for inter-species variation (Sollman et al., 2013).
- No scientific reasoning is provided for setting the thresholds of abundance categories (very low to very high). No statistical tests are run either to test the significance of difference between the categories.
- Since the camera traps were only deployed for 20-30 days each (Page 48), it is unclear whether saturation (species accumulation) was reached in order to compile a comprehensive mammal checklist or to ascertain species richness, suggesting that the ZoI could contain many more species than were detected during this short and spatially restricted survey.

Flawed inference

The Report's claims of 'very low abundance' of mammals in the study area (Page 115) are unsubstantiated given the serious issues with data collection and analysis outlined above. Relative abundance index (RAI) is a poor estimator of abundance if species, survey and camera trap unit-species factors are not factored in (Sollman et al., 2013). The Report neither incorporates these factors nor

employs published methods such as the Random Encounter Model (Rowcliffe et al., 2008) or the Camera Trap Distance Sampling (Howe et al., 2017) used to produce reliable and robust estimates of species abundance from camera trapped data. An extensive long-term camera trap study in Dibang Valley that estimated species abundance using the Random Encounter Model (REM) showed that mammal abundances in Dibang's community forests were comparable to other tiger reserves in India with similar ecological carrying capacities (Nijhawan, 2018).

The stated rationale that since Dibang WLS is located 10 km from the ZoI (Page 116), the species found there should be excluded from the study area is at odds with widely known information on movement ecology and habitat preference of many of the area's species. Species such as Mishmi takin, red goral and Himalayan black bear are known to seasonally migrate between elevations, spending summers in higher altitudes and descending to lower elevation during winters (Choudhury 2008). Additionally, an aerial distance of 10 km is well within the limits of species with large home ranges especially big cats such as the tiger, Asiatic wild dog and clouded leopard that have been recorded in significant numbers in the region, even by WII's own scientists (Nijhawan, 2018; Adhikharimayum and Gopi, 2018).

Table 5.45 fails to mention the Chinese pangolin as Schedule I (Part I) species while Asiatic wild dog, smooth-coated otter and Himalayan black bear are included in Schedule II of the IWPA, meaning that these species are legally protected by provisions of the act. Additionally, Himalayan serow is classified as Near Threatened which the table also omits. Additionally, claims that threatened species such as spotted linsang and clouded leopard would not exist in the area (Page 117) are easily refutable as both have been reported from elevations lower than and similar to the ZoI in Dibang Valley (Nijhawan, 2018), Namdapha (Datta et al., 2008a; b) and Dampa Tiger Reserves (Singh and MacDonald, 2017).

Map 6.1 spatially displays the potential impacts of the proposed HEP divided into four categories from 'Very High' to 'Low'. This assessment compounds the serious methodological issues of data collection and analysis explained in prior sections. Thus, any results it generates are entirely unreliable. Beyond this, a striking pattern becomes clear if one compares Map 6.1 with Map 4.5. The grids identified as medium-to-high impact ('very high', 'high', "medium') coincide with the grids where camera traps were placed. Therefore, if more extensive and longer camera trapping surveys had been conducted, species captures would have been higher. In sum, the impact assessment, and any mitigative measures by association, do not correspond to the true species abundance in the study area.

Mitigatory measures and impacts on mammals

The Report does not suggest any mitigatory measures for region's medium-to-large sized mammals impacted by the project, instead stating, "low abundance status of most of the species and few individuals of threatened species, along with predomination of forest and river habitat and absence of any critical habitat, it was not possible to suggest any threatened species and habitat specific conservation plan" (Page 185). The claim of absence of 'critical habitat' contradicts both the FAC's observations that "The type of forests appears to be predominantly Subtropical Evergreen broad-leaved forest and Subtropical rain.... The vegetation is of multi-strata and can truly be said to be irreplaceable", and the fact Dibang Valley is part of a Global Biodiversity Hotspot – 36 such places that constitute 2.4% of the earth's surface but host 60% of all biodiversity on earth. The region is certainly critical habitat for several endangered and rare species (Choudhury 2008), which the Report fails to adequately document because of its flawed methodology.

The Report identifies only two areas within the region as being 'ecologically sensitive' - Dibang and Mehao WL sanctuaries – without providing any explanation of how only these were deemed 'sensitive' and the community forests were not. This directly contradicts a previous long-term study in Dibang Valley that showed that many community forests supported higher species richness and abundance for mammals than Dibang WLS (Nijhawan, 2018). Furthermore, and paradoxically, the Report concludes that "Nevertheless, continuous monitoring of movements of key mammalian fauna covering 10 km radius from the project study area is very important", "[the] monitoring of tiger distribution and movements need to be continued in upper and lower Dibang Valley", and "it is essential that long-term monitoring and conservation efforts are planned particularly for species of conservation significance (Table 5.46) such as Mishmi Takin (endemic species), Alpine Musk Deer, Red goral, Clouded Leopard, Snow Leopard, Spotted Linsang, in and around the study area" [emphasis added]. These statements imply two assumptions: (1) that the HEP's impacts will be experienced within 10 km of its radius, and (2) the species of conservation exist within or close to the study area. If these are indeed true, then by not adequately surveying the area inside the small ZoI and within 10 km of the proposed site, the Report has failed to present a comprehensive and reliable assessment of the study area's biodiversity and the HEP's impacts on it. In the same vein, one is hard-pressed to understand why the Report ignores the outcome of another long-term WII study (Adhikarimayum and Gopi, 2018) that found camera trap evidence of tigers within 10 km radius of the HEP site, if indeed the "10 km radius from the project study area is very important". Finally, these statements on the need for a monitoring study contradict the report's mandate which was to assess biodiversity to determine the potential impacts of HEP on it) before the construction of the HEP and not after.

SECTION 8: REVIEW OF HERPETOFAUNA

Amphibians and reptiles are declining globally due to habitat fragmentation, climate change and diseases (Gibbons 2000). Amphibians, in particular, show high rates of endemism and niche specialisation (Hu et al., 2012; Brown et al., 2016). Both groups feed on insects, fish, small mammals and other reptiles, and provide key ecosystem functions by distributing nutrients across and within different trophic levels. Population declines in either of these groups could potentially lead to a collapse in these nutrient transfer networks (Odum, 1971). Furthermore, such declines may lead to consequent population increases in groups that may be harmful to human health (e.g. insects and rodent pests), or decreases in predatory mammal and bird species that depend on herpetofauna (Aguilar et al., 2013; Hocking and Babbitt, 2014). Simple counts of species richness or diversity estimates do not capture the importance of such vital trophic interactions.

Dibang Valley has many undiscovered species

At least 95 species of herpetofauna have been reported from the Dibang river basin, including 48 amphibian, 12 lizard, and 34 snake species. (Borah and Bordoloi, 2004; Athreya and Sheth, 2016; Roy et al., 2018; Ohler et al., 2018). Several species that are found in neighbouring Myanmar and China are also found here (e.g., *Rhacophorus translineatus* and *Trimeresurus medoensis*). Recent studies in the Western Ghats have used molecular approaches to show that many species previously thought to be widespread across these mountains' complex topography may in fact be entirely distinct species (Garg et al. 2017). This is extremely likely to be the case with herpetofauna in Dibang Valley as it's numerous mountain ridges and deep valleys can act as barriers to dispersal, resulting in speciation and endemism (Wollenberg et al., 2008; Che et al., 2010). Here, scientists have recently identified 23 amphibian genera and 36 reptile genera A comparison with herpetofaunal data from across Northeastern India, and West-

Central Arunachal in particular, has indicated that these recently reported species from Dibang Valley, many of which are yet to formally be described, could be new to science. These include, but are not limited to, species within the following genera: *Amolops, Bufo, Cyrtodactylus, Duttaphrynus, Ingerana, Kurixalus, Microhyla, Nasutixalus, Oreolalax, Philautus, Rhacophorus, Scutiger, Theloderma, and Xenophrys*.

Underreporting due to inappropriate methodology and under-sampling

The report's documented evidence of 14 amphibian and 31 reptile species is significantly lower than the total number of species (95) reported in all previous studies in Dibang Valley conducted in habitats and elevation gradients comparable to that of the ZoI (Borah and Bordoloi 2004; Athreya and Sheth 2016; Roy et al. 2018; Ohler et al. 2018). Shockingly, the Report fails to record a *Bufo* species (an Indochinese toad), locally called '*Pahu*', which is extremely abundant in Dibang Valley even during the season when the fieldwork was conducted. Furthermore, the Report includes the following species in its checklist: *Feihyhyla vittatus, Occidozyga borealis, Clinotarsus alticola, Polypedates teraiensis.* This is highly suspicious because not only are these species strict monsoon-breeders, which would make it very difficult to encounter them during the non-monsoon fieldwork, but also because none of the other multi-year extensive surveys mentioned above have been able to confirm their presence in Dibang Valley. These and many more discrepancies are a result of very limited sampling in the non-breeding season which has led to an overall underestimation of the study area's herpetofaunal diversity. These are discussed in detail below:

- The fieldwork was conducted between February and May/June, that is, before the monsoon season. This is the incorrect season for herpetofaunal surveys in the region as a large majority of the Dibang Valley's herpetofauna breed during the monsoon, and are consequently most active during this period, increasing the probability of detection (Ahmed et al., 2009; Sarkar and Ray, 2010). In direct comparison, Roy et al. (2018) reported 41 species of amphibians from field surveys conducted across all seasons, including monsoon, over three consecutive years covering 24 km of transects along streams, forests, grasslands and wetlands across the Dibang River Basin. Roy et al. (2018) encountered a higher number of species because they sampled different types of habitat spread over a larger elevation range (200-3500m). The Report does not refer to this ground-breaking, comprehensive and highly relevant piece of work.
- The study did not survey all habitats present in the ZoI including the various successive stages of evergreen and temperate broad-leaved forest, grassland, rivers and streams, wetlands, and ponds (Roy et al., 2018). Instead, the sampling was conducted almost entirely along roads (Page 44). The Report does not provide a rationale for the focus on roads which are widely known to create disturbance and barriers to movement, in addition to being non-ideal habitats for herpetofauna (Carr and Fahrig, 2001; Bennett, 2017; Marsh et al., 2017). Ongoing highway construction between Anini and Etalin has further increased the level of disturbance in these already disturbed areas. Road surveys only allow for the detection of few ground-dwelling species that access these areas. Furthermore, only 38 km of road length was surveyed. Because these roads are present only on the left banks of the Dri and Talõ rivers, the survey missed 70 of the 112 sampling grids, effectively accessing roads in mere 37.5% of the 112 km² ZoI.
- Streams were not sampled thoroughly. Amphibians are water-dependent and are found in abundance in streams and other water bodies. Additionally, different stream orders host different amphibian communities with headwater streams being keystone habitats for montane amphibians (Gillespie et al. 2004; Stoddard et al. 2004; Ficetola et al. 2011). The study does not provide any

- information on how and what type of streams were selected for surveys. Furthermore, the sampling time window of 5-10 minutes allotted for streams is much too short and is certain to have missed many rare and difficult to observe species.
- Tree frogs are severely under-sampled based on comparisons with studies in Dibang Valley and other parts of Arunachal Pradesh (Pawar and Birand 2001; Tesia and Bordoloi 2013; Roy et al. 2018). The largest land-cover in the ZoI are different types of forests and even these have not been surveyed thoroughly, casting doubts over the representativeness of the survey's findings.
- A sizeable population of Keeled box turtle *Cuora mouhotii* (IUCN Endangered), locally called 'Ichimbo', was recorded from forest patches between 200-1000m elevation range forest patches downstream of the project site (Ahmed and Roy, 2016). Predictive habitat suitability modelling has indicated that there is a very high likelihood of this species being present around Etalin which has similar habitat type and elevation range (Ahmed and Roy, 2016). Due to large-scale habitat change, this little-studied, extremely rare turtle may be pushed towards local extinction.

Even with the above-mentioned biases in sampling methodology, incorrect sampling season and inadequate survey locations and distances, the study found 14 species underscoring the richness of the habitat in the project area. In sum, since amphibian richness and abundance were not adequately sampled across the ZoI, the Report has understated the true impacts of the HEP on this globally threatened faunal group. Most of these herpetofaunal species remain data deficient according to the IUCN's Redlist data underscoring the importance of comprehensive studies to ascertain their ecology and conservation status.

SECTION 9: LIMITED CRITIQUE OF SOCIO-CULTURAL SURVEYS

Overall, the parts of the Report related to assessing socio-cultural impacts of the HEP and corresponding mitigatory measures show a lack of understanding of complex socio-ecological dynamics and nature-culture interdependencies. The Report does not reference recent and widely-distributed published work on the relations between the Idu Mishmi, the natural environment and transboundary issues (e.g. Aiyadurai, 2016; Aiyadurai and Lee, 2017; Aiyadurai, 2018), ethnobiological knowledge (e.g. Ghosh et al., 2014) and publications by Idu Mishmi scholars on local belief systems (e.g. Mihu et al., 2018). While a detailed sociological critique of the Report is outside the scope of this review, the points below highlight some particularly concerning trends:

- Basic population figures are incorrect: The Report cites the 2011 All India Census incorrectly in stating that the Idu Mishmi population of Dibang Valley is 8004 (Page 34). While the 2011 Census does not specify the Idu Mishmi population of the district, it clearly mentions that 71.23% (5701) of the total population is Scheduled Tribe (ST). Since the Idu Mishmi is the primary ST in Dibang Valley, a large majority of the 5701 STs are likely to be Idu.
- Flawed understanding of local livelihoods: In various places, the Report claims that "about 38.2% of PAFs [Project affected families] are dependent on forests and their resources, as being their primary source of income...", and "only 4% of the people are dependent on agriculture for their livelihood income..." (Page 136; Table 5.55; Figure 5.10). These data and resulting conclusions seem to have a flawed idea of local livelihoods, assuming that those who are engaged in 'non-forest' livelihoods such as 'business', 'contract', 'labour' etc., do not simultaneously depend on forest-based products. Local livelihoods in Arunachal Pradesh cannot be categorized neatly into one form or the other as people depend upon a variety of sources throughout the year. Thus,

people who have been categorised as dependent upon 'contract', 'labour' etc, may also be dependent upon forest-based products as well as agriculture at different times of the year to supplement their food and cultural needs. Based on the report's own findings that 86.3% of those surveyed were involved in NTFP collection (Page 139), even the households characterised as being dependent on government jobs are sure to be involved in both agriculture and extraction of forest products at different times of the year. Finally, years of social science research has shown that livelihood strategies in traditional societies aren't simply a source of cash income, they carry complex socio-cultural meanings and purposes which the Report entirely ignores (Shackleton et al., 2011; Singh et al., 2017; Singh et al., 2018).

- Outdated perspectives on *jhum* agriculture: The Report asserts that "*jhum* agriculture or shifting cultivation is known for causing loss of forest cover and associated biodiversity values" (Page 136). This is an outdated and flawed statement that is not supported by research within the last 50 years. Many of these misconceptions around *jhum* have been dispelled by seminal work over the years (Conklin, 1954; Ramakrishnan, 1990, Mandal and Raman, 2016). Contrary to state policies targeting *jhum*, long-term research on medium to long-fallow *jhum* (10-15 fallow years) has found that these systems contribute substantially to subsistence livelihoods while being environmentally sustainable and supporting rich biodiversity within fallows. Recent work on *jhum* among the Adi tribe in the nearby Siang valley highlights the importance of *jhum* in providing direct and indirect benefits as well as being a critical resource for poorer families who may not have alternate sources of income (Teegalapalli, 2017; Datta-Roy, 2019). For communities practising shifting cultivation, it is not merely a system of cultivation, but a sociocultural activity that provides meaning to land and reifies individual and group identities.
- Undermining the local importance of mithun: The Report notes "people prefer wild meat but tend to consume domestic meat more often" (Page 143) highlighting the importance of domestic meat in the lives of Idu Mishmi. However, it entirely fails to mention that one of the most important components of domestic meat (in terms of biomass as well as socio-cultural aspects) is the mithun (Bos frontalis). An adult mithun weighs about 500 kg and its meat forms a key source of protein for remote villages. The mithun holds a strong cultural meaning for the various native peoples of Northeast India and continues to be used as a token of currency and social status. They are sacrificed during specific festivals, such as the Idu festival of reh, making them an unalienable component of socio-cultural lives as well as an important part of local economy (Nijhawan, 2018). Mithuns are free-ranging, utilising the forests around the village with occasional visits to the village. The HEP, in particular the displacement of entire villages, will have significant impacts on the mithun. In response to local people's concerns about impacts on mithun ('loss of grazing land for the mithun' in Table 5.57), the Report proposes mitigation measures that seem to have no relevance for the free-ranging mithuns in the area (e.g. "All the three action plans will be implemented and developed within the village Gaucher land (land allotted for grazing)". The proposal to plant nutritional grasses in additional parcels of land ignores published research that mithun are browsers that depend on 42-60 distinct species of naturally occurring trees, lianas, shrubs and herbs (Taba et al., 2015; Jamir and Khare, 2018). Does the Report envision re-creating these entire forest ecosystems for the mithun?
- Undermining the impacts of migrant labour: There appears to be a minimization of the negative impacts of the project and local concerns about them throughout the Report (e.g. various repetitions in the top half of Table 5.57). For example, the expected increase in the local population from the influx of an estimated 12,000 additional in-migrants during the construction phase is incorrectly reported to be 150% given that the entire population of the district is 8004. The many serious socio-cultural, economic and safety issues resulting from such enormous and sudden demographic changes are lumped under "Cultural Issues" (Table 7.22) leaving the

- mitigation up to "high-level village committees". In doing so, the Report seems to be arguing that issues of local sovereignty and women's safety (Table 7.22) are apparently cultural matters. What exactly will the User Agency and the new "committees" do to address these very serious threats to local safety and well-being is left completely unanswered.
- Contradictory mitigation proposals: The Report recommends that villagers should be encouraged to do "large scale vegetable and fruit gardening" (Table 7.17). In principle, an attention to the importance of generating alternative sources of local income is to be appreciated. However, such recommendations directly contradict the mitigation measures the Report proposes for conservation of biodiversity in earlier sections such as compensatory afforestation (Page 183). This implies that biodiversity faces direct impacts not only from habitat loss due to the project but also due to "large-scale" agriculture. Furthermore, it refers to these recommendations as "a kind of people's biodiversity conservation plan and will also improve their life quality of villagers". However, how an exercise like the People's Biodiversity Register (PBR) qualifies as a mitigatory measure against loss of habitat and associated socio-cultural-economic benefits is left entirely unexplained. Finally, this raises an important question: shouldn't a PBR exercise that documents local knowledge on biodiversity be conducted before and not after the project is developed?
- Romanticised notions of livelihood transitions: The Report lists various proposed activities (job opportunities, creating supplementary income generating sources, health care, improved education) as part of their Corporate Social Responsibility (Page 202; Section 7.7.2). They state that since providing jobs to members of all affected families is not possible, they will be supporting various income generating programmes to reduce the local dependency on natural resources. Some of the jobs listed and described as 'decent' are welder, fitter, plumber, electrician etc. The nature of jobs proposed are largely alien to most highland farmers and rests on the assumption that people can make an effortless transition to new livelihoods immediately after the shock of resettlement. Studies on dam-induced displacement have found that it has negative impacts on employment rate, income level, income resource, and overall well-being of people (Nusser, 2003; Baran and Myschowoda, 2009; Richter et al., 2010; Zou, 2011; Huang et al., 2018). Sudden restrictions on access to natural resources can have negative consequences and natural resources and subsistence agriculture can act as safety nets during transition periods, particularly for the most vulnerable sections of the society (Kura et al., 2017).

CONCLUSION

At the outset, it is important to highlight that the FAC (2017) does an apt assessment of the irreversible direct and the indirect impacts of the HEP on the area's biodiversity: "The land in which the project is proposed is in pristine forests with riverine growth that once cut cannot be replaced", and "[the] proposed project falls under the richest bio-geographical province of the Himalayan zone and falls under one of the mega biodiversity hotspots of the world." Study after study has demonstrated that this region and its biodiversity is important both from a regional and a global perspective.

The Report suffers from several technical shortcomings. The sampling was done in a much smaller area (the ZOI) than will see the direct and indirect impacts of the HEP. Even within the ZoI, not all grids were surveyed, ignoring the potentially disastrous impact of the HEP on yet undiscovered and endemic taxa. In the few sampling grids that were surveyed, unscientific and biased methods were often used

and not all elevations were sampled despite ample evidence that elevational gradients contribute to the high biodiversity in the Eastern Himalayas. Moreover, several groups of taxa were not surveyed, including numerous insect orders such as Diptera, Orthoptera, and arthropod species such as scorpions, and pseudoscorpions, and other taxa such as crustaceans, molluses, and protozoans. Excluding highly diverse taxa such as insects and arthropods underestimates biodiversity values. Finally, traditional ecological knowledge and the intricacies of nature-human relations of the local people that inhabit and use these landscapes has been consistently undervalued. Importantly, the report seemed to have ignored a large majority of high quality relevant published literature on Dibang Valley's ecology, geology and anthropology. Overall, this has resulted in serious discrepancies in assessing the true biodiversity value of the impacted area, including the many RET/endemic species.

Incomplete and inaccurate data lead to an erroneous and inadequate assessment of the impact potential of the proposed HEP on biodiversity. The assessment of impact potential was not based on peer-reviewed methodologies and did not account for the grids that were not sampled, underestimated the biodiversity impacts of the proposed HEP. Moreover, the estimated potential impacts do not account for the loss of feedbacks between trophic levels due to the loss of certain keystone species or habitats. This can and will have far-reaching consequences for the overall stability and resilience of the ecosystem. Trophic interactions are the result of millions of years of evolutionary processes and do not stabilize in a short time when disrupted. Thus, the impact potential reported cannot be used to assess the appropriate mitigatory measures on the potential damage to wildlife and habitat.

The Report's claim of 38.2% of the PAFs being dependent upon forest resources is an underestimate and does not consider the entire range of services that are utilised by forest-dependent communities. Decades of social science research has shown that livelihood strategies in traditional societies are not simply means for providing cash income, but that they also carry complex socio-cultural meanings and values, which the Report entirely ignores.

Despite the many methodological flaws, and that the study was shortened to 4 months (for all taxa, and socio-cultural impact, despite the FAC mandate for a multi-season replicated study), the Report still makes it evident that Dibang Valley is exceptionally rich in biodiversity as every grid cell that was sampled, contained at least one RET/endemic species. It is then shocking that based on these results, and without a mandate, the Report goes on to prepare a Wildlife Conservation Plan taking the HEP as a given. All this without adequately evaluating or discussing the nature of impacts on specific groups, in particular, the Critically Endangered, Endangered, Vulnerable, range-restricted and endemics species that were recorded by the Report in the ZoI.

Data from several research studies show that the landscape is highly diverse. It is not difficult to see that a large fraction of this biodiversity will be impacted by any disturbance to the habitat. However, the recommendations of this report do not come close to mitigating the serious impacts of this HEP. The few mitigatory measures recommended for some specific faunal groups in the form of butterfly, reptile parks and nest boxes cannot be considered as well-designed ecologically meaningful measures.

The Report suggests these mitigation measures with the implicit assumption that they will work without any complications (e.g.: whether or not nest boxes will be accepted and accounting for durability given harshness of weather). It is regrettable that given the unique and extreme importance of the landscape to regional and global biodiversity, the study does not even attempt to outline relevant and viable mitigation measures and extent of damage to wildlife habitats, ecosystem services, and the local people. For instance, no mitigatory measures are provided for the loss of habitat for riverine birds, despite

Dibang Valley harbouring some of the highest riverine bird diversity in the world. In other cases, the suggested mitigatory measures assume a patronizing attitude towards the local Idu Mishmi people and emerge from a lack of a nuanced understanding of socio-cultural dynamics and interdependencies between people and the natural environment. The Report recommends large-scale agriculture and a shift to cash crops, without considering the impact of such large scale (possibly monoculture) cultivation on biodiversity, local livelihoods and well-being. In the same vein, the conclusions on the impacts on mithun are short-sighted, and underestimate the cultural significance of these animals. By not accounting for a large influx of labourers and their impacts on the landscape, the wildlife habitat, and on the cultural identity, health and wellbeing of the local people, the Report undermines the impact of this project on multiple fronts.

Finally, and crucially, studies that inform high-level decision-making on historically significant projects, such as the Etalin HEP which would be the largest hydropower project in the country, must go through a transparent and scientifically recognised peer-reviewed process given the pitfalls, numerous discrepancies and gaps highlighted in this review. Such decisions have irreversible impacts on lives, livelihoods and the environment.

REFERENCES

Acharjee, B. K., and Karzee L. (2016) A checklist of dragonfly (Odonata: Anisoptera) diversity in the campus of University Of Science And Technology, Meghalaya (USTM), Ribhoi district, Meghalaya, India. *Journal of Entomology and Zoology Studies*, 4(3): 124–127.

Adger, W.N., 2000. Social and ecological resilience: are they related? *Progress in human geography*, 24(3): 347-364.

Adhikarimayum, A.S. and Gopi, G.V. (2018) First photographic record of tiger presence at higher elevations of the Mishmi Hills in the Eastern Himalayan Biodiversity Hotspot, Arunachal Pradesh, India. *Journal of Threatened Taxa*, 10(13):12833-12836.(Published by the Director, Zool Surv. India, Kolkata).

Ahmed, M.F., Das, A. and Dutta, S.K. (2009) *Amphibians and Reptiles of Northeast India: a Photographic Guide. Guwahati, Assam, India.* Aaranyak. pp. 169.

Ahmed M F and Roy. J K (2016) Status, distribution and Ecology of the Keeled Box Turtle, *Cuora mouhotii* in Dibang Valley, Arunachal Pradesh, India. *Technical Report. Aaranyak*, HRCD: 09/2016. Pp 18.

Aiyadurai, A. (2016). 'Tigers are Our Brothers' Understanding Human-Nature Relations in the Mishmi Hills, Northeast India. *Conservation and Society*, *14*(4), pp.305-316.

Aiyadurai, A. and Lee, C.S., (2017). Living on the Sino-Indian border: the story of the Mishmis in Arunachal Pradesh, Northeast India. *Asian Ethnology*, 76(2), pp.367-395.

Aiyadurai, A., (2018). Multiple Meanings of Nature Conservation: Insights from Dibang Valley, Arunachal Pradesh. *Economic and Political Weekly* 53 (39).

Alfred, J. R. B. (2006) Fauna of Arunachal Pradesh, State Fauna Series, 13(Part-2)

Ahmed M F and Roy. J K (2016) Status, distribution and Ecology of the Keeled Box Turtle, *Cuora mouhotii* in Dibang Valley, Arunachal Pradesh, India. *Technical Report. Aaranyak*, HRCD: 09/2016. Pp 18.

Andreas H. and Jis S. (2014) Sapria Himalayana Griffith, an Endangered Species from the Mishmi Hills, Dibang Valley, Arunachal Pradesh. *Indian forester* 140.

Anonymous (2006) Arunachal Pradesh: Human Development Report 2005, Government of Arunachal Pradesh, Itanagar.

Athreya, R. and Sheth, C. (2016). Mitigation of Damage to Wildlife Habitats. Road construction between Etalin and Damro (km 0-13), Dibang Valley District, Arunachal Pradesh, CONSRA #04. Report submitted to the Arunachal Pradesh Forest Department and Border Roads Organization, Government of India.

Aguilar, A.V., Gomez, A.M.C. and Agudelo, C.A.R. (2013). Ecosystem services provided by amphibians and reptiles in Neotropical ecosystems. *International Journal of Biodiversity Science, Ecosystem Services & Management*, 9:3, 257-272, DOI: 10.1080/21513732.2013.821168

Bagra, K., Kadu, K., Nebeswahwar, K., Laskar, B.A., Sarkar, U.K. and Das, D.N. (2009) Ichthyological survey and review of the checklist of fish fauna of Arunachal Pradesh, India. *Check List* 5(2): 330–350.

Baran, E., & Myschowoda, C. (2009). Dams and fisheries in the Mekong Basin. *Aquatic Ecosystem Health & Management*, 12(3), 227-234.

Barua, K. N., Gogoi, G., and Hazarika, P. (2018) Comparative study on structural composition and community association of Nambor Wildlife Sanctuary and its South-Westward extended Bornewria forest, Assam, India. *Tropical Plant Research*, 5(2), 233-242.

Bennett, V.J. (2017). Effects of Road Density and Pattern on the Conservation of Species and Biodiversity. *Current Landscape Ecology Reports*, 2, 1–11. doi.org/10.1007/s40823-017-0020-6

Bhaumik, M and Pathak, M. K. (2003). Oberonia helferi Hook. f., (Orchidaceael-A new record for India from Dibang Valley, Arunachal Pradesh. *Bull. Bot. Surv. India* 45(1-4): 217 -220.

Bhaumik, M and Pathak, M. K. (2006). A new variety of Cheirostylis chinensis Rolfe var. glabra (Orchidace) from Dibang Valley, Arunachal Pradesh, India. *Bull. Bot. Surv. India* 47(1-4):183 - 184.

Bhaumik, M and M. K. Pathak (2010) Contributions to the Orchid Flora vis-a.-vis forest types of Dibang Valley District of Arunachal Pradesh (India). *Bulletin of Arunachal Forest Research*, 26 (Iand2): 58-64.

Bora, A, and Bhattacharyya, D (2017). Phytodiversity of Barail Wildlife Sanctuary, Assam, India: field-based observation-I. Trees and lianas. *Checklist* 13(6): 1037-1053.

Borah, M.M. and Bordoloi, S. (2004). Altitudinal distribution pattern of Amphibian fauna of Arunachal Pradesh with special reference to Dehang Debang Biosphere Reserve, Arunachal Pradesh, India. *Himalayan Biosphere reserve bulletin*. Vol.5 (1and2)

Borah, N. and Garkoti, S.C. (2011). Tree species composition, diversity and regeneration pattern in undisturbed and disturbed forests of Barak Valley, South Assam, India. *Int J Eco Environ Sci* 37(3):131-141.

Borah, N., Rabha, D. and Athokpam, F.D. (2016). Tree species diversity in tropical forests of Barak valley in Assam, India. *Trop Plant Res* 3(1):1-9

Borogayary, B., Das, A.K., Nath, A.J. (2017). Tree species composition and population structure of a secondary tropical evergreen forest in Cachar district, Assam. *J Environ Bio* 39(1): 67-71. 10.22438/jeb/39/1/MRN-487

Bose, T.K., Bhattacharjee, S.K., Das, P. and Basak, V.C. (1999). *Orchids of India*. (Revised edition). Calcutta.

Brown, J.L., Sillero, N., Glaw, F., Bora, P., Vieites, D.R., Vences, M. (2016). Spatial Biodiversity Patterns of Madagascar's Amphibians and Reptiles. *PLoS ONE* 11(1): e0144076. doi.org/10.1371/journal.pone.0144076

Bruggeman, P. (2016) Arisaema gracilentum, a new species of Arisaema (Araceae) from NE India. *Blumea-Biodiversity, Evolution and Biogeography of Plants*, 61(2), 87-89.

Carr, L. W., and Fahrig, L. (2001). Effect of Road Traffic on Two Amphibian Species of Differing Vagility. *Conservation Biology*, 15(4), 1071–1078. doi:10.1046/j.1523-1739.2001.0150041071.x

Chada, P., M.J. Gogoi and J.J. Young (2017) A new species of zygaenid moth *Elcysma ziroensis* (Lepidoptera: Zygaenidae: Chalcosiinae) from India. *Journal of Threatened Taxa* 9(12): 11060–11066.

Che, J., Zhou, W. W., Hu, J. S., Yan, F., Papenfuss, T. J., Wake, D. B., & Zhang, Y. P. (2010) Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia. *Proceedings of the National Academy of Sciences*, 107(31), 13765-13770.

Choudhury, A.U. (2008) Survey of mammals and birds in Dihang-Dibang Biosphere Reserve, Arunachal Pradesh. Final report to Ministry of Environment and Forests, Government of India. *The Rhino Foundation for Nature in North East India*, Guwahati, India. 70pp.

Chowdhery, H. J. (1997) Plant diversity in Dibang Valley district of Arunachal Pradesh. In: Plant diversity Hotspots in India: an overview, (eds. Hajra, P.K. and V. Mudgal), pp 97 - 134. *Botanical Survey of India*, Calcutta.

Chowdhery, H. J. (1998) Orchid flora of Arunachal Pradesh. Dehra Dun.

Chowdhery, H. J. (2001) Orchid diversity in North- EastIndia. J Orchid Soc. India 15(1-2): 1-17.

Cingolani AM, Renison D, Zak MR, et al. (2004) Mapping vegetation in a heterogeneous mountain rangeland using landsat data: an alternative method to define and classify land-cover units. *Remote Sens Environ* 92:84-97.

Colwell, R.K. and Lees, D.C. (2000) The mid-domain effect: geometric constraints on the geography of species richness. *Trends in Ecology and Evolution*, 15,70-76.

Conklin, H. C. (1954). An Ethnoecological Approach to Shifting Agriculture. *Transactions of the New York Academy of Sciences*, 17(2), 133–142.

Dalvi, S., (2013) Elliot's Laughingthrush Trochalopteron elliotii and Black-headed Greenfinch Chloris ambigua from Anini, Arunachal Pradesh, India. *IndianBIRDS* 8 (5): 130.

Darshan, A. S, A. Santoshkumar, and D. N. Das. (2019) Biodiversity of Fishes in Arunachal Himalaya, 1st Edition, *Academic Press*, 284.

Datta, A., Anand, M.O., and Naniwadekar, R. 2008a. Empty forests: large carnivore and prey abundance in Namdapha National Park, north-east India. *Biological Conservation* 141: 1429-1435.

Datta, A., Naniwadekar, R., and Anand, M.O. 2008b. Occurrence and conservation status of small carnivores in two protected areas in Arunachal, north-east India. *Small Carnivore Conservation* 39:1-10.

Das, G. N., Gayen, S., and Jaiswal, R. K. (2018) A record of Blue Posy *Drupadia scaeva* cyara (Hewitson, 1878)(Lycaenidae: Theclinae: Theclini) from Dibang Valley, Arunachal Pradesh, India. *Journal of Threatened Taxa*, 10(2), 11348-11350.

Das, S. M. (2019) Diversity of Odonata in and around the Vivekananda Kendra Vidyalaya (NEC), Baragolai, Margherita, Tinsukia district of Assam (India). International *Journal of Scientific and Research Publications*, 6(8): 406–410.

Datta-Roy, A. (2019). Swidden hunting and Adi culture: Highland Transitions in Arunachal Pradesh, India. Manipal Academy of Higher Education.

Deori, C., Hynniewta, T. M., and Phukan, S. J. (2004) *Dendrobium numaldeori*, a new species from India. *Orchid Review* 112: 279-282.

Dutta G., Devi A. (2013a) Plant diversity and community structure in tropical moist deciduous sal (Shorea robusta Gaertn.) forest of Assam, Northeast India. *J Experim Analy Behav* 1(3): 1-4.

Dutta G., Devi A. (2013b) Plant diversity, population structure and regeneration status in disturbed tropical forests in Assam, northeast India. *J For Res* 24(4): 715-720.

Elwin, V (1959). *The Art of the North-east Frontier of India*, Volume 1. Pub. Shillong, North-east Frontier Agency. 227 pages.

Ficetola, G.F., Marziali, L., Rossaro, B., Bernardi, F.D. and Padoa-Schioppa, E. (2011) Landscape–stream interactions and habitat conservation for amphibians. *Ecological Applications*, 21(4):1272–1282.

Forkuor, G., Dimobe, K., Serme, I., & Tondoh, J. E. (2018). Landsat-8 vs. Sentinel-2: examining the added value of sentinel-2's red-edge bands to land-use and land-cover mapping in Burkina Faso. *GIScience & Remote Sensing*, 55(3), 331-354.

Fox, R. (2013) The decline of moths in Great Britain: a review of possible causes. *Insect Conservation and Diversity*, 6:5–19.

Gasse, P.V. (2013) Butterflies of India – Annotated Checklist. Flutters. Archived and retrieved from the original PDF on 2018-04-02.

Garg S, Suyesh R, Sukesan S, Biju S. (2017) Seven new species of Night Frogs (Anura, Nyctibatrachidae) from the Western Ghats Biodiversity Hotspot of India, with remarkably high diversity of diminutive forms. *PeerJ* 5:e3007 https://doi.org/10.7717/peerj.3007

Ghosh, G., Ghosh, D. C., Melkania, U., and Majumdar, U. (2014). Traditional medicinal plants used by the Adi, Idu and Khamba tribes of Dehang-Debang Biosphere Reserve in Arunachal Pradesh. *International Journal of Agriculture, Environment and Biotechnology*, 7(1), 165.

Gibbons, J. Whitfield, et al. (2000) "The Global Decline of Reptiles, Déjà Vu Amphibians: Reptile species are declining on a global scale. Six significant threats to reptile populations are habitat loss and degradation, introduced invasive species, environmental pollution, disease, unsustainable use, and global climate change." *BioScience* 50.8: 653-666.

Gillespie, G.R. Lockie, D., Scroggie, M.P. and Iskandar, D. T. (2004) Habitat use by stream-breeding frogs in south-east Sulawesi, with some preliminary observations on community organization. *Journal of Tropical Ecology*, 20: 439–448.

Gogoi, M. (2012). Butterflies (Lepidoptera) of Dibang Valley, Mishmi Hills, Arunachal Pradesh, India. *Journal of Threatened Taxa*, 4(12), 3137-3160.

Gogoi, R., Borah, S. (2013) Two new species and a new record for Colocasia (Araceae: Colocasieae) from Arunachal Pradesh, Northeast India. *Garden's bulletin* Singapore

Gogoi, R., Borah, S. (2015) *Impatiens ashihoi*, a new species of Balsaminaceae from Dibang Valley of Arunachal Pradesh, India. *Phytotaxa* 238 (3)

Gogoi, R., Borah, S. (2016) Two new species of *Impatiens* L. (Balsaminaceae) from Arunachal Pradesh, Northeast India. *Webbia* 72(1)

Gogoi, H., Umbrey, C., Taba, M., Badak, M. and R. Nyabin. (2018). Honey bees in Eastern Himalaya: Colony status, Comparison of pH and Protein profile (1D SDS) of honey produced. *Journal of Bioresources*, 5(2): 58-64.

Gogoi, M. J., and Payra, A. (2019) Echo perornata recorded in north-eastern India (Odonata: Calopterygi dae). *Notulae odonatologicae*, *9*(3), 113-115.

Gurumayum, S., Kosygin, L., and Tamang, L. (2016) Ichthyofaunal diversity of Arunachal Pradesh, India: A part of Himalaya biodiversity hotspot. *International Journal of Fisheries and Aquatic Studies*, 4(2), 337–346.

Hallmann, C. A., M. Sorg, E. Jongejans, H. Siepel, N. Hofland, H. Schwan, W. Stenmans, A. Müller, H. Sumser, T. Hörren, D. Goulson, and H. de Kroon. (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas edited by E. G. Lamb. *PLOS ONE*, 12:e0185809.

Haridasan, K., Shukla, G. P., & Beniwal, B. S. (1995). Medicinal plants of Arunachal Pradesh. SFRI Information Bulletin, 5.

Hocking, D. J., & Babbitt, K. J. (2014). Amphibian contributions to ecosystem services. *Herpetological Conservation & Biology*, 9, 1–17.

Howe, E.J., Buckland, S.T., Després-Einspenner, M.L. and Kühl, H.S. (2017) Distance sampling with camera traps. *Methods in Ecology and Evolution*, *8*(11), pp.1558-1565.

International Hydropower Association. (2019) How-to Guide: Hydropower Erosion and Sedimentation.

Hu J, Li C, Xie F, Jiang J. 2012. Endemic amphibians and their distribution in China.

Asian Herpetological Research, 3:163–171.

Huang, Y., Lin, W., Li, S., & Ning, Y. (2018). Social impacts of dam-induced displacement and resettlement: A comparative case study in China. *Sustainability*, 10(11), 4018.

Jackson, R.D. and Huete, A.R. (1991) Interpreting Vegetation Indices. Preventive Veterinary Medicine, 11, 185-200.

Jamir, S. and N. Khare, (2018) Food, Feeding Habits of Mithun (Bos frontalis) in Protected Area of Nagaland. *International Journal of Current Microbiology and Applied Sciences*, 7(10): 1416-1426.

Kreft, H., Jetz, W. (2013) Comment on 'An Update of Wallace's Zoogeographic Regions of the World'. *Science* 341 (6144), pp 343.

Krishna, M.C., Kumar, A., Tripathi, O.P. and Koprowski, J.L., (2016) Diversity, distribution and status of gliding squirrels in protected and non-protected areas of the Eastern Himalayas in India. *Hystrix, the Italian Journal of Mammalogy*. doi:10.4404/hystrix-27.2-11688.

Kura, Y., Joffre, O., Laplante, B., & Sengvilaykham, B. (2017). Coping with resettlement: A livelihood adaptation analysis in the Mekong River basin. *Land Use Policy*, 60, 139–149. https://doi.org/10.1016/j.landusepol.2016.10.017

Langevelde, F., M. Braamburg-Annegarn, M. E. Huigens, R. Groendijk, O. Poitevin, J. R. Deijk, W. N. Ellis, R. H. A. Grunsven, R. Vos, R. A. Vos, M. Franzén, and M. F. WallisDeVries. (2018) Declines in moth populations stress the need for conserving dark nights. *Global Change Biology*, 24:925–932.

Leather, S. R. 2018. "Ecological Armageddon" - more evidence for the drastic decline in insect numbers. *Annals of Applied Biology*, 172:1–3.

Lidén M., Adhikari A. (2019) Floristic report from Upper Dibang (Arunachal Pradesh) with several species new to India. *Pleione* 13(1): 175 –187.

Mandal J, Raman TRS (2016) Shifting agriculture supports more tropical forest birds than oil palm or teak plantations in Mizoram, northeast India. *The Condor: Ornithological Applications* 118(2): 345-359.

Marathe, A., Priyadarsanan, D. R., Krishnaswamy, J., & Shanker, K. (2020) Spatial and climatic variables independently drive elevational gradients in ant species richness in the Eastern Himalaya. *PloS one*, *15*(1), e0227628.

Marsh, D.M., Cosentino, B.J., Jones, K.S., Apodaca, J.J., et al. (2017). Effects of roads and land use on frog distributions across spatial scales and regions in the Eastern and Central United States. *Diversity and Distributions*, 23: 158-170. doi:10.1111/ddi.12516

Menzies, R.K. and Rao, M. (2018) Common Starling Sturnus vulgaris in Anini, Arunachal Pradesh. *IndianBIRDS* 14 (3): 90.

McCain, C. M., & Grytnes, J. A. (2001) Elevational gradients in species richness. e LS.

Naniwadekar, R., Shukla, U., Viswanathan, A. and Datta, A., (2013) Records of small carnivores from in and around Namdapha Tiger Reserve, Arunachal Pradesh, India. *Small Carnivore Conservation*, 49:1-8.

Nijhawan, S. (2018) Human-animal relations and the role of cultural norms in tiger conservation in the Idu Mishmi of Arunachal Pradesh, India. Doctoral dissertation, University College London (UCL), U.K.

Nijhawan, S., Mitapo, I., Pulu, J., Carbone, C. and Rowcliffe, J.M., (2019) Does polymorphism make the Asiatic golden cat the most adaptable predator in the Eastern Himalayas? *Ecology* 100(10), p.e02768

Nüsser, M. (2003). Political ecology of large dams: a critical review. *Petermanns Geographische Mitteilungen*, 147(1), 20-27.

O'Brien, T.G., Kinnaird, M.F. and Wibisono, H.T., (2003) Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. *Animal Conservation forum* 6(2):131-139.

Odum, E. P. (1971). Fundamentals of Ecology, 3rd Edition, W.B. Saunders Company, Philadelphia-London-Toronto.

Ohler, Annemarie, et al. (2018) "A study on amphibian fauna of Arunachal Pradesh (India)." *Alytes* 36.1-4: 276-288.

Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014) Good practices for estimating area and assessing accuracy of land change. *Remote Sensing of Environment*, 148, 42-57.

Pascal Bruggeman. (2016). Arisaema gracilentum, a new species of Arisaema (Araceae) from NE India. Blumea 61

Pathak, M. K. and M. Bhaumik (2005) Vegetation pattern in Dibang Valley, Arunachal Pradesh. In. Plant Taxonomy: Advances and Relevance (eds. Pandey, A. K., Jun Wen and J.v.v. Dogra). pp. 179 - 191. CBS Publishers and Distributors, New Delhi.

Phukan, S. J. and A. A. Mao (2006) Pleione saxicola in India. Orchid Review 114 no. 1269: 150-151.

Raj, H., Mattu, V.K., and Thakur, M.L. (2012). Pollinator diversity and relative abundance of insect visitors on apple crop in Shimla hills of western Himalaya, India. International Journal of Science and Nature, 3(3): 507-513

Ramakrishnan, P. S. (1990). Agricultural Systems of the Northeastern Hill Region of India. *Agroecology*, 78:251–274.

Rao, R. R. and Hajra, P. K., (1986) Floristic diversity of the Eastern Himalaya in a conservation perspective. Proceedings of the Indian Academy of Sciences, 1.

Rasmussen, P. C., Hatibaruah, B., Mekola, R., and Dalvi, S., (2017) Records of Mishmi Wren-babbler *Spelaeornis badeigularis* in the Anini area, northern Mishmi Hills. *Indian BIRDS* 13 (3): 74–76.

Richter, B. D., Postel, S., Revenga, C., Scudder, T., Lehner, B., Churchill, A., & Chow, M. (2010). Lost in development's shadow: the downstream human consequences of dams. *Water Alternatives*, *3*(2).

Rowcliffe, J.M., Field, J., Turvey, S.T. and Carbone, C., (2008) Estimating animal density using camera traps without the need for individual recognition. *Journal of Applied Ecology*, 45(4):1228-1236.

Roy, J.K., Begum, R.H. and Ahmed, M.F. (2017) Report on poorly known *Theloderma moloch* (Annandale, 1912) from Arunachal Pradesh, Northeast India. *Russian Journal of Herpetology*, Vol. 24, No. 3, pp. 248 – 250.

Roy, J.K., R.H. Begum and M.F. Ahmed (2018) Amphibians of the Dibang River Basin, Arunachal Pradesh: an annotated checklist with distribution records. *Journal of Threatened Taxa* 10(15): 2940–12952; https://doi.org/10.11609/jott.4249.10.15.12940-12952

Saikia P, Khan ML (2016) Tree species diversity and its population and regeneration status in homegardens of upper Assam, Northeast India. *J For Environ Sci* 32(2): 129-139.

Saini, J., Chandra, K., Kumar, H., Ghosh, D.J., Kazmi, S.I., Payra, A. and Deepak, C.K., 2018. Diversity of Bees (Hymenoptera: Apoidea) in and around Namdapha National Park, with an Updated Checklist from Arunachal Pradesh, India. *Records of the Zoological Survey of India*, 118(4), pp.413-425.

Sánchez-Bayo, F. and K. A. G. Wyckhuys. (2019) Worldwide decline of the entomofauna: A review of its drivers. *Biological Conservation*, 232:8–27.

Sarkar M, Devi A (2014) Assessment of diversity, population structure and regeneration status of tree species in Hollangapar Gibbon Wildlife Sanctuary, Assam, Northeast India. *Trop Plant Res* 1(2): 26-36.

Sarkar, A.K., and Ray, S. (2006) Amphibia. In: Alfred, J.R.B. ed., Fauna of Arunachal Pradesh, Stale Fauna Series, Calcutta, *Zoological Survey of India*, 13(1): 285-316.

Sarma KS, Borah B (2014) Phytosociological investigation of aquatic macrophytes of five wetlands of Sonitpur district of Assam, India. *Ann Biol Res* (9): 38-45.

K. Sassa, P. Canuti (eds.) (2009) Landslides – Disaster Risk Reduction, *Springer-Verlag* Berlin Heidelberg.

Schuette, P., Wagner, A.P., Wagner, M.E. and Creel, S., (2013) Occupancy patterns and niche partitioning within a diverse carnivore community exposed to anthropogenic pressures. *Biological Conservation*, 158:301-312.

Shackleton, S., Delang, C. O., & Angelsen, A. (2011). From subsistence to safety nets and cash income: exploring the diverse values of non-timber forest products for livelihoods and poverty alleviation. In *Non-timber forest products in the global context* (pp. 55-81). Springer, Berlin, Heidelberg.

Shankar, R., & Rawat, M. S. (2008). Medicinal plants used in traditional medicine in Lohit and Dibang valley districts of Arunachal Pradesh. *Indian Journal of Traditional Knowledge*, 7(2), 288–295.

Singh, P. and Macdonald, D.W., (2017) Populations and activity patterns of clouded leopards and marbled cats in Dampa Tiger Reserve, *India. Journal of Mammalogy*, 98(5): 1453-1462.

Singh, R. K., Zander, K. K., Kumar, S., Singh, A., Sheoran, P., Kumar, A., ... & Padung, E. (2017). Perceptions of climate variability and livelihood adaptations relating to gender and wealth among the Adi community of the Eastern Indian Himalayas. *Applied Geography*, 86: 41-52.

Singh, R. K., Hussain, S. M., Riba, T., Singh, A., Padung, E., Rallen, O., ... & Bhardwaj, A. K. (2018). Classification and management of community forests in Indian Eastern Himalayas: implications on ecosystem services, conservation and livelihoods. *Ecological Processes*, 7(1): 27.

Sondhi, S. and P. K. Roy, (2013). Sightings of Gonepteryx amintha thibetana Nekrutenko, 1968 (Lepidoptera: Pieridae: Coliadinae) from Arunachal Pradesh, India: an addition to Indian butterfly fauna erroneously placed in southeastern Tibet earlier. *Journal of Threatened Taxa* 5(12): 4687–4692

Sollmann, R., Mohamed, A., Samejima, H. and Wilting, A., (2013) Risky business or simple solution—Relative abundance indices from camera-trapping. *Biological Conservation*, 159: 405-412.

Stanley, T., and D. B. Kirschbaum (2017) A heuristic approach to global landslide susceptibility mapping, *Nat. Hazards*, 1–20, doi:10.1007/s11069-017-2757-y. Link to article: http://link.springer.com/article/10.1007%2Fs11069-017-2757-y

Stoddard, M. and Hayes, J.P. and Erickson, J. (2004) Influence of Forest Management on Headwater Stream Amphibians at Multiple Spatial Scales. *Cooperative Forest Ecosystem Research* (CFER). USGS FS-3018.

Subramanian, K.A. and Babu, R. (2017) Checklist of Odonata (Insecta) of India. Version 3.0. www.zsi.gov.in.

Taba, R., Kimsing, A. Y., Biju, T., Ngukir, J., Tamir, T., Tag, H., Payum, T., and D., Mize. (2015) Fodder Plants of Mithun *Bos Frontalis*: A Case Study Of West Siang, Arunachal Pradesh. *Journal of Bioresources* 2(2): 74-78.

Tangjang, S., Namsa, N. D., Aran, C., & Litin, A. (2011). An ethnobotanical survey of medicinal plants in the Eastern Himalayan zone of Arunachal Pradesh, India. *Journal of Ethnopharmacology*, 134(1), 18–25.

Teegalapalli, K. (2017). Forests and farms: understanding a shifting cultivation system in the Eastern Himalaya. Manipal Academy of Higher Education.

Thogmartin, W. E., R. Wiederholt, K. Oberhauser, R. G. Drum, J. E. Diffendorfer, S. Altizer, O. R. Taylor, J. Pleasants, D. Semmens, B. Semmens, R. Erickson, K. Libby, and L. Lopez-Hoffman. (2017) Monarch butterfly population decline in North America: identifying the threatening processes. *Royal Society Open Science*, 4:170760

Wearn, O. R., and Glover-Kapfer, P. (2017) Camera-trapping for conservation: a guide to best-practices (Woking: WWF).

Wollenberg, K. C., Vieites, D. R., Van Der Meijden, A., Glaw, F., Cannatella, D. C., & Vences, M. (2008) Patterns of endemism and species richness in Malagasy cophyline frogs support a key role of mountainous areas for speciation. *Evolution: International Journal of Organic Evolution*, 62(8), 1890-1907.

Young, O.R., Berkhout, F., Gallopin, G.C., Janssen, M.A., Ostrom, E. and Van der Leeuw, S., 2006. The globalization of socio-ecological systems: an agenda for scientific research. *Global Environmental Change*, *16*(3): 304-316.

Zou, S. T. (2011). Disrupted and Dislocated Livelihoods: Impacts of Khuga Dam on the Livelihoods of the Displaced People in Churachandpur, Manipur. *Journal of North East India Studies*, *1*(1), 36-60.

APPENDIX I: CHECKLIST OF BUTTERFLIES OF DIBANG VALLEY (Gogoi 2020 unpublished data)

Sl no.	Family	Common name	Scientific name
1	Papilionidae	Common Rose	Pachliopta aristolochiae aristolochiae
2	Papilionidae	Common Birdwing	Troides helena cerberus
3	Papilionidae	Golden Birdwing	Troides aeacus aeacus
4	Papilionidae	Common Batwing	Atrophaneura varuna astorion
5	Papilionidae	Lesser Batwing	Atrophaneura aidoneus
6	Papilionidae	De Nicéville's Windmill	Byasa polla
7	Papilionidae	Common Windmill	Byasa polyeuctes polyeuctes
8	Papilionidae	Great Windmill	Byasa dasarada dasarada
9	Papilionidae	Tawny Mime	Papilio agestor agestor
10	Papilionidae	Lesser Mime	Papilio epycides epycides
11	Papilionidae	Common Mime	Papilio clytia clytia
12	Papilionidae	Common Mormon	Papilio polytes romulus
13	Papilionidae	Lime Butterfly	Papilio demoleus demoleus
14	Papilionidae	Common Raven	Papilio castor castor
15	Papilionidae	Red Helen	Papilio helenus helenus
16	Papilionidae	Yellow Helen	Papilio nephelus chaon
17	Papilionidae	Great Mormon	Papilio memnon agenor
18	Papilionidae	Spangle	Papilio protenor euprotenor
19	Papilionidae	Redbreast	Papilio alcmenor alcmenor
20	Papilionidae	Common Peacock	Papilio polyctor ganesa
21	Papilionidae	Paris Peacock	Papilio paris paris
22	Papilionidae	Krishna Peacock	Papilio krishna
23	Papilionidae	Blue Peacock	Papilio arcturus
24	Papilionidae	Fivebar Swordtail	Graphium antiphates pompilius
25	Papilionidae	Fourbar Swordtail	Graphium agetes agetes
26	Papilionidae	Common Jay	Graphium doson axion
27	Papilionidae	Lesser Jay	Graphium evemon albociliatis
28	Papilionidae	Veined Jay	Graphium chironides chironides
29	Papilionidae	Tailed Jay	Graphium agamemnon agamemnon
30	Papilionidae	Common Bluebottle	Graphium sarpedon sarpedon
31	Papilionidae	Great Zebra	Graphium xenocles xenocles
32	Papilionidae	White Dragontail	Lamproptera curius curius
33	Papilionidae	Green Dragontail	Lamproptera meges indistincta
34	Papilionidae	Brown Gorgon	Meandrusa lachinus lachinus
35	Papilionidae	Yellow Gorgon	Meandrusa payeni evan
36	Pieridae	One-Spot Grass Yellow	Eurema andersoni andersoni
37	Pieridae	Three-Spot Grass Yellow	Eurema blanda silhetana
38	Pieridae	Small Grass Yellow	Eurema brigitta rubella
39	Pieridae	Common Grass Yellow	Eurema hecabe hecabe
40	Pieridae	Tree Yellow	Gandaca harina assamica
41	Pieridae	Tibetan Brimstone	Gonepteryx amintha thibetana
42	Pieridae	Tailed Sulphur	Dercas verhuelli doubledayi

42	Pieridae	Common Emigrant	Catangilia namana namana
43		Common Emigrant	Catopsilia pomona pomona
44	Pieridae	Mottled Emigrant	Catopsilia pyranthe pyranthe
45	Pieridae	Dark Clouded Yellow	Colias fieldii fieldii
46	Pieridae D: :1	Yellow Orange Tip	Ixias pyrene familiaris
47	Pieridae D: :1	Pale Wanderer	Pareronia avatar avatar
48	Pieridae Pieridae	Chocolate Albatross	Appias lyncida hippoides
49	Pieridae	Orange Albatross	Appias nero galba
50	Pieridae	Common Albatross	Appias albina darada
51	Pieridae	Spot Puffin	Appias lalage lalage
52	Pieridae	Plain Puffin	Appias indra indra
53	Pieridae	Large Cabbage White	Pieris brassicae
54	Pieridae	Bhutan Blackvein	Aporia harrietae
55	Pieridae	Green-veined White	Pieris napi montana
56	Pieridae	Indian Cabbage White	Pieris canidia indica
57	Pieridae	Lesser Gull	Cepora nadina nadina
58	Pieridae	Common Gull	Cepora nerissa
59	Pieridae	Spotted Sawtooth	Prioneris thestylis thestylis
60	Pieridae	Redspot Sawtooth	Prioneris clemanthe
61	Pieridae	Hill Jezebel	Delias belladonna lugens
62	Pieridae	Dark Jezebel	Delias berinda
63	Pieridae	Pale Jezebel	Delias sanaca
64	Pieridae	Red-breast Jezebel	Delias acalis pyramus
65	Pieridae	Yellow Jezebel	Delias agostina agostina
66	Lycaenidae	Angled Sunbeam	Curetis dentata dentata
67	Lycaenidae	Forest Pierrot	Taraka hamada mendesia
68	Lycaenidae	Straight Pierrot	Caleta roxus roxana
69	Lycaenidae	Elbowed Pierrot	Caleta elna noliteia
70	Lycaenidae	Common Pierrot	Castalius rosimon rosimon
71	Lycaenidae	Balkan Pierrot	Tarucus balkanicus
72	Lycaenidae	Silver Royal	Ancema blanka
73	Lycaenidae	Bi-Spot Royal	Ancema ctesia ctesia
74	Lycaenidae	Chocolate Royal	Remelana jangala ravata
75	Lycaenidae	Centaur Oakblue	Arhopala centaurus pirithous
76	Lycaenidae	Hooked Oakblue	Arhopala paramuta
77	Lycaenidae	Variegated Plushblue	Flos adriana
78	Lycaenidae	Spangled Plushblue	Flos asoka
79	Lycaenidae	Common Acacia Blue	Surendra vivarna
80	Lycaenidae	Silver Streaked Acacia Blue	Zinaspa todara distorta
81	Lycaenidae	Yamfly	Loxura atymnus continentalis
82	Lycaenidae	Branded Yamfly	Yasoda tripunctata tripunctata
83	Lycaenidae	Common Imperial	Cheritra freja freja
84	Lycaenidae	Blue Imperial	Ticherra acte
85	Lycaenidae	Common Tit	Hypolycaena erylus himavantus
86	Lycaenidae	Blue Tit	Chliaria kina cachara
87	Lycaenidae	Fluffy Tit	Zeltus amasa
88	Lycaenidae	Common Flash	Rapala nissa ratna
	•		•

89	Lycaenidae	Slate Flash	Rapala manea schistacea
90	-	Copper Flash	Rapala pheritima
91	Lycaenidae	-	Euaspa pavo
92	Lycaenidae	-	Ahlbergia sp
93	Lycaenidae	Common Tinsel	Catapoecilma elegans
94	Lycaenidae	Evans Silverline	Spindasis evansii
95	Lycaenidae	Khaki Silverline	Spindasis rukmini
96	Lycaenidae	Long-banded Silverline	Spindasis lohita himalayanus
97	Lycaenidae	Chinese Silverline	Spindasis zhengweilie
98	Lycaenidae	Purple Sapphire	Heliophorus epicles
99	Lycaenidae	Green Sapphire	Heliophorus moorei
100	Lycaenidae	Golden Sapphire	Heliophorus brahma major
101	Lycaenidae	Common Ciliate Blue	Anthene emolus emolus
102	Lycaenidae	Pointed Cilate Blue	Anthene lycaenina lycaenina
103	Lycaenidae	Zebra Blue	Leptotes plinius plinius
104	Lycaenidae	Large-4-Lineblue	Nacaduba pactolus continentalis
105	Lycaenidae	Pale-4-Lineblue	Nacaduba hermus nabo
106	Lycaenidae	Transparent 6-Lineblue	Nacaduba kurava euplea
107	Lycaenidae	Banded Lineblue	Prosotas aluta coelestis
108	Lycaenidae	Common Lineblue	Prosotas nora nora
109	Lycaenidae	Pointed Lineblue	Lonolyce helicon merguiana
110	Lycaenidae	Dingy Lineblue	Petrelaea dana
111	Lycaenidae	Common Cerulean	Jamides celeno celeno
112	Lycaenidae	Dark Cerulean	Jamides bochus bochus
113	Lycaenidae	Glistening Cerulean	Jamides elpis pseudelpis
114	Lycaenidae	Metallic Cerulean	Jamides alecto eurysaces
115	Lycaenidae	Forget-me-not	Catochrysops strabo srrabo
116	Lycaenidae	Peablue	Lampides boeticus
117	Lycaenidae	Pale Spark	Sinthusa virga
118	Lycaenidae	Dark Grass Blue	Zizeeria karsandra
119	Lycaenidae	Pale Grass Blue	Pseudozizeeria maha maha
120	Lycaenidae	Eastern Grass Jewel	Freyeria putli
121	Lycaenidae	Lesser Grass Blue	Zizina otis otis
122	Lycaenidae	Malayan	Megisba malaya
123	Lycaenidae	Common Hedge Blue	Acytolepis puspa gisca
124	Lycaenidae	Pale Hedge Blue	Udara cardia dilecta
125	Lycaenidae	Albocerulean	Udara albocaerulea
126	Lycaenidae	Plain Hedge Blue	Celastrina lavendularis limbata
127	Lycaenidae	Hill Hedge Blue	Celastrina argiolus sikkima
128	Lycaenidae	White banded Hedgeblue	Lycaenopsis transpectus
129	Lycaenidae	Margined Hedgeblue	Celatoxia marginata
130	Lycaenidae	Large Hedge Blue	Celastrina huegelii oreana
131	Lycaenidae	Moore's Cupid	Shijimia moorei
132	Lycaenidae	False Tibetan Cupid	Tongeia pseudozuthus
133	Lycaenidae	Lime Blue	Chilades laius laius
134	Lycaenidae	Blue Posy	Drupadia scaeva

135	Riodinidae	Dark Judy	Abisara fylla
136	Riodinidae	Punchinello	Zemeros flegyas indicus
137	Riodinidae	Mixed Punch	Doona ouida
138	Riodinidae	Lesser Punch	Dodona dipoea
139	Riodinidae	Tailed Punch	Dodona eugens
140	Riodinidae	Striped Punch	Dodonia adonira naga
141	Nymphalidae	Club Beak	Libythea myrrha sanguinalis
142	Nymphalidae	Common Beak	Libythea lepita lepita
143	Nymphalidae	Striped Tiger	Danaus genutia
144	Nymphalidae	Blue Tiger	Tirumala limniace mutina
145	Nymphalidae	Dark Blue Tiger	Tirumala septentrionis
146	Nymphalidae	Glassy Tiger	Parantica aglea melanoides
147	Nymphalidae	Chestnut Tiger	Parantica sita
148	Nymphalidae	Chocolate Tiger	Parantica melaneus plateniston
149	Nymphalidae	Striped Blue Crow	Euploea mulciber mulciber
150	Nymphalidae	Long-branded Blue Crow	Euploea algea deione
151	Nymphalidae	Magpie Crow	Euploea radamanthus radamanthus
152	Nymphalidae	Common Nawab	Polyura athamas athamas
153	Nymphalidae	Great Nawab	Polyura eudamippus eudamippus
154	Nymphalidae	Pallid Nawab	Polyura arja arja
155	Nymphalidae	Stately Nawab	Polyura dolon
156	Nymphalidae	Tawny Rajah	Charaxes bernardus hierax
157	Nymphalidae	Scarce Tawny Rajah	Charaxes aristogiton
158	Nymphalidae	Variegated Rajah	Charaxes kahruba
159	Nymphalidae	Yellow Rajah	Charaxes marmax marmax
160	Nymphalidae	Jungle Glory	Thaumantis diores diores
161	Nymphalidae	Common Faun	Faunis canens
162	Nymphalidae	Common Duffer	Discophora sondaica
163	Nymphalidae	Common Evening Brown	Melanitis leda
164	Nymphalidae	Bamboo Treebrown	Lethe europa niladana
165	Nymphalidae	Common Red Forester	Lethe mekara zuchara
166	Nymphalidae	Angled Red Forester	Lethe chandica flanona
167	Nymphalidae	Tailed Red Forester	Lethe sinorix
168	Nymphalidae	Blue Forester	Lethe scanda
169	Nymphalidae	Common Forester	Lethe insana
170	Nymphalidae	Dull Forester	Lethe gulnihal
171	Nymphalidae	Brown Forester	Lethe serbonis
172	Nymphalidae	Common Woodbrown	Lethe sidonis sidonis
173	Nymphalidae	Barred Woodbrown	Lethe maitrya
174	Nymphalidae	Yellow Woodbrown	Lethe nicetas
175	Nymphalidae	Moeller's Silverfork	Lethe moelleri
176	Nymphalidae	Small Goldenfork	Lethe atkinsonia
177	Nymphalidae	Large Goldenfork	Lethe goalpara
178	Nymphalidae	Single Silverstripe	Lethe ramadeva
179	Nymphalidae	Lilacfork	Lethe sura
180	Nymphalidae	Scarce Labyrinth	Neope pulahina

181	Nymphalidae	Dusky Labyrinth	Neope yama
182	Nymphalidae	Veined Labyrinth	Neope pulaha
183	Nymphalidae	Chumbi Wall	Chonala masoni
184	Nymphalidae	Large Tawny Wall	Rhapicera satricus
185	Nymphalidae	Dusky Diadem	Ethope himachala
186	Nymphalidae	Yellow Owl	Neorina hilda
187	Nymphalidae	Yellow Kaiser	Penthema lisarda lisarda
188	Nymphalidae	Common Palmfly	Elymnias hypermenestra undularis
189	Nymphalidae	Spotted Palmfly	Elymnias malelas malelas
190	Nymphalidae	Whitebar Bushbrown	Mycalesis anaxias
191	Nymphalidae	Watson's Bushbrown	Mycalesis adamsoni
192	Nymphalidae	Plain Busbrown	Mycalesis malsarida
193	Nymphalidae	Common Bushbrown	Mycalesis perseus blasius
194	Nymphalidae	Dark-brand Bushbrown	Mycalesis mineus mineus
195	Nymphalidae	Long-brand Bushbrown	Mycalesis visala visala
196	Nymphalidae	Salmon-branded Bushbrown	Mycalesis misenus misenus
197	Nymphalidae	Bright-eye Bushbrown	Mycalesis nicotia
198	Nymphalidae	Nigger	Orsotrioena medus medus
199	Nymphalidae	Striped Ringlet	Ragadia crisilda crisilda
200	Nymphalidae	Dark Catseye	Zipoetis scylax
201	Nymphalidae	Mottled Argus	Hemadara narasingha
202	Nymphalidae	Himalayan Fivering	Ypthima parasakra
203	Nymphalidae	Large Threering	Ypthima newara?
204	Nymphalidae	Common Fiverring	Ypthima baldus baldus
205	Nymphalidae	Ring sp.	Ypthima sp.
206	Nymphalidae	Roy's Argus	Callerebia dibangensis
207	Nymphalidae	Pallid Argus	Callerebia scanda
208	Nymphalidae	Argus sp	Callerebia sp.
209	Nymphalidae	Doherty's Satyr	Aulocera loha
210	Nymphalidae	Yellow Coster	Acraea issoria issoria
211	Nymphalidae	Tawny Coster	Acraea violae
212	Nymphalidae	Red Lacewing	Cethosia biblis tisamena
213	Nymphalidae	Leopard Lacewing	Cethosia cyane cyane
214	Nymphalidae	Indian Fritillary	Argynnis hyperbius hyperbius
215	Nymphalidae	Yellow Dryad	Aemona amathusia
216	Nymphalidae	Cruiser	Vindula erota erota
217	Nymphalidae	Common Yeoman	Cirrochroa tyche mithila
218	Nymphalidae	Large Yeoman	Cirrochroa aoris aoris
219	Nymphalidae	Rustic	Cupha erymanthis lotis
220	Nymphalidae	Vagrant	Vagrans egista sinha
221	Nymphalidae	Common Leopard	Phalanta phalantha phalantha
222	Nymphalidae	Green Commodore	Sumalia daraxa daraxa
223	Nymphalidae	Commodore	Auzakia danava danava
224	Nymphalidae	White Commodore	Parasarpa dudu dudu
225	Nymphalidae	Scarce White Commodore	Limenitis zulema
226	Nymphalidae	Grey Commodore	Bhagadatta austenia

227	Nymphalidae	Bicolour Commodore	Parasarpa zayla
228	Nymphalidae	Commander	Moduza procris procris
229	Nymphalidae	Studded Sergent	Athyma asura asura
230	Nymphalidae	Himalayan Sergent	Athyma opalina orientalis
231	Nymphalidae	Blackvein Sergent	Athyma ranga ranga
232	Nymphalidae	Staff Sergent	Athyma selenophora selenophora
233	Nymphalidae	Small Staff Sergent	Athyma zeroca zeroca
234	Nymphalidae	Orange Staff Sergent	Athyma cama
235	Nymphalidae	Common Lascar	Pantoporia hordonia hordonia
236	Nymphalidae	Perak Lascar	Pantoporia peraka
237	Nymphalidae	Great Yellow Sailer	Neptis radha radha
238	Nymphalidae	Yellow Sailer	Neptis ananta ochracea
239	Nymphalidae	Small Yellow Sailer	Neptis miah miah
240	Nymphalidae	Pale Hockeystick Sailer	Neptis manasa manasa
241	Nymphalidae	Common Sailer	Neptis hylas astola
242	Nymphalidae	Creamy Sailer	Neptis soma soma
243	Nymphalidae	Sullied Sailer	Neptis clinia susruta
244	Nymphalidae	Pallas Sailer	Neptis sappho
244	Nymphalidae	Broad-banded Sailer	Neptis sankara amba
245	Nymphalidae	Dingy Sailer	Neptis pseudovikasi
247	Nymphalidae	Plain Sailer	Neptis cartica cartica
248	Nymphalidae	Pale Green Sailer	Neptis zaida
249	• •	Short-banded Sailer	•
250	Nymphalidae	Common Baron	Phaedyma columella ophiana Euthalia aconthea
	Nymphalidae	Blue Baron	
251	Nymphalidae		Euthalia telchinia
252	Nymphalidae	Gaudy Baron French Duke	Euthalia lubentina
253	Nymphalidae		Euthalia franciae
254	Nymphalidae	Grand Duchess	Euthalia patala
255	Nymphalidae	White edge Blue Baron	Euthalia phemius
256	• •	Dark Archduke	Lexias dirtea khasiana
257	Nymphalidae	Bronze Duke	Euthalia nara
258	Nymphalidae	-	Limenitis rileyi
259	Nymphalidae	Common Map	Cyrestis thyodamas thyodamas
260	Nymphalidae	Common Maplet	Chersonesia risa
261	Nymphalidae	Tabby	Pseudergolis wedah
262	Nymphalidae	Constable	Dichorrhagia nesimachus
263	Nymphalidae	Popinjay	Stibochiona nicea
264	Nymphalidae	Angled Castor	Ariadne ariadne pallidior
265	Nymphalidae	Common Castor	Ariadne merione tapestrina
266	Nymphalidae	Sergeant Emperor	Mimathyma chevana
267	Nymphalidae	Indian Purple Emperor	Mimathyma ambica
268	Nymphalidae	Courtesan	Euripus nyctelius
269	Nymphalidae	Circe	Hestinalis nama
270	Nymphalidae	Eastern Courtier	Sephisa chandra
271	Nymphalidae	Common Jester	Symbrenthia lilaea khasiana
272	Nymphalidae	Spotted Jester	Symbrenthia hypselis cotanda

273	Nymphalidae	Indian Red Admiral	Vanessa indica indica
274	Nymphalidae	Painted Lady	Vanessa cardui
275	Nymphalidae	Blue Admiral	Kaniska canace canace
276	Nymphalidae	Black Prince	Rohana parisatis
277	Nymphalidae	Brown Prince	Rohana parvata
278	Nymphalidae	Chocolate Pansy	Junonia iphita iphita
279	Nymphalidae	Grey Pansy	Junonia atlites
280	Nymphalidae	Peacock Pansy	Junonia almana almana
281	Nymphalidae	Lemon Pansy	Junonia lemonias lemonias
282	Nymphalidae	Great Eggfly	Hypolimnas bolina
283	Nymphalidae	Orange Oakleaf	Kallima inachus inachus
284	Nymphalidae	Autumn Leaf	Doleschallia bisaltide indica
285	Nymphalidae	Panther	Neurosigma doubledayi
286	Nymphalidae	Abor Freak	Callinaga aborica
287	Nymphalidae	Tiger Brown	Orinoma damaris
288	Hesperiidae	Branded Orange Awlet	Burara oedipodea aegina
289	Hesperiidae	Orange Awlet	Burara jaina vasundhara
290	Hesperiidae	Small Green Awlet	Burara amara
291	Hesperiidae	Green Awlet	Burara vasutana
292	Hesperiidae	Pale Green Awlet	Burara gomata gomata
293	Hesperiidae	Slate Awl	Hasora anura danda
294	Hesperiidae	Common Awl	Hasora badra badra
295	Hesperiidae	Plain Banded Awl	Hasora vita indica
296	Hesperiidae	Common Banded Awl	Hasora chromus
297	Hesperiidae	White-banded Awl	Hasora taminatus bhavara
298	Hesperiidae	Brown Awl	Badamia exclamationis
299	Hesperiidae	Orange-tail Awl	Bibasis sena sena
300	Hesperiidae	Indian Awlking	Choaspes benjaminii
301	Hesperiidae	Common Spotted Flat	Celaenorrhinus leucocera chinensis
302	Hesperiidae	Dark Yellow-banded Flat	Celaenorrhinus aurivittata aurivittata
303	Hesperiidae	Himalayan White Flat	Seseria dohertyi
304	Hesperiidae	Fulvous Pied Flat	Pseudocoladenia dan
305	Hesperiidae	Hairy Angle	Darpa hanria
306	Hesperiidae	White Yellow-breast Flat	Gerosis sinica indica
307	Hesperiidae	Water Snow Flat	Tagiades litigiosa litigiosa
308	Hesperiidae	Yellow Flat	Mooreana trichoneura pralaya
309	Hesperiidae	Chestnut Angle	Odontoptilum angulata
310	Hesperiidae	Tawny Angle	Ctenoptilum vasava vasava
311	Hesperiidae	Striped Dawnfly	Capila jayadeva
312	Hesperiidae	Small Indian Palm Bob	Suastus minuta aditia
313	Hesperiidae	Common Dartlet	Oriens gola gola
314	Hesperiidae	Common Dart	Potanthus pseudomaesa
315	Hesperiidae	Broad Bident Dart	Potanthus trachala tytleri
316	Hesperiidae	Chinese Dart	Potanthus confucius
317	Hesperiidae	Sikkim Dart	Potanthus mara
318	Hesperiidae	Pale Palm Dart	Telicota colon
-	1		

319	Hesperiidae	Dark Palm Dart	Telicota ancilla
320	Hesperiidae	Light Straw Ace	Pithauria stramineipennis
321	Hesperiidae	Dark Straw Ace	Pithauria murdava
322	Hesperiidae	Chequered Ace	Thoressa hyrie
323	Hesperiidae	Ace sp.	Thoressa sp.
324	Hesperiidae	Northern Spotted Ace	Thoressa cerata
325	Hesperiidae	Banded Ace	Halpe zema zema
326	Hesperiidae	Moore's Ace	Halpe porus
327	Hesperiidae	Plain Ace	Halpe kumara
328	Hesperiidae	Indian Ace	Halpe homolea
329	Hesperiidae	Tufted Ace	Sebastonyma dolopia
330	Hesperiidae	Brown Bush Bob	Pedesta pandita
331	Hesperiidae	Bush Bob sp	Pedesta sp.
332	Hesperiidae	Figure of 8 Swift	Caltoris pagana
333	Hesperiidae	Colon Swift	Caltoris cahira cara
334	Hesperiidae	Paintbrush Swift	Baoris farri
335	Hesperiidae	Contiguous Swift	Polytremis lubricans
336	Hesperiidae	Yellow-Spot Swift	Polytremis eltola
337	Hesperiidae	Straight Swift	Parnara bada
338	Hesperiidae	Bevan's Swift	Pseudoborbo bevani
339	Hesperiidae	Tree Flitter	Hyarotis adrastus praba
340	Hesperiidae	Purple and Gold Flitter	Zographetus satwa
341	Hesperiidae	Black-veined Redeye	Matapa sasivarna
342	Hesperiidae	Hedge Hopper	Baracus vittatus septentrionum
343	Hesperiidae	Large Forest Bob	Scobura cephaloides cephaloides
344	Hesperiidae	Dark Velvet Bob	Koruthaialos butleri butleri
345	Hesperiidae	Chocolate Demon	Ancistroides nigrita
346	Hesperiidae	Common Banded Demon	Notocrypta paralysos alysia
347	Hesperiidae	Spotted Demon	Notocrypta feisthameli alysos
348	Hesperiidae	Grass Demon	Udaspes folus
349	Hesperiidae	Forest Hopper	Asticopterus jama kada
350	Hesperiidae	Veined Scrub Hopper	Aeromachus stigmatus
351	Hesperiidae	Grey Scrub Hopper	Aeromachus jhora creta
352	Hesperiidae	Hedge Hopper sp.	Baracus sp.
353	Hesperiidae	Manipur Ace	Sovia malta
354	Hesperiidae	Lucas' Ace	Sovia magna

APPENDIX II: INFORMATION ON FISH SPECIES OF DIBANG VALLEY (various sources)

Fish species described from Dibang River basin in the past 10 years:

- 1. *Aborichthys iphipaniensis* (Kosygin et al., 2019) Iphipani River at Roing, Lower Dibang Valley, Arunachal Pradesh, India, 28°10'44"N, 95°50'08"E, elevation 418 meters.
- 2. Garra arunachalensis (Nebeshwar and Vishwanath, 2013) Lower Divang valley district, Deapani River at Roing, Brahmaputa basin, 29°09'35"N, 95°54'08"E, Arunachal Pradesh, India.
- 3. *Garra arupi* Nebeshwar (Vishwanath and Das 2009) Deopani River at Roing, Lower Dibang Valley, Arunachal Pradesh, India.
- 4. *Mustura harkishorei* (Das and Darshan, 2017) Dibang River, Brahmaputra basin, Lower Dibang Valley district, Arunachal Pradesh state, India, 28°09'59"N, 95°43'55"E.
- 5. *Mystus prabini* (Darshan et al., 2019) Sinkin River (a tributary of the Siang River) at Anpum village, Lower Dibang district, Arunachal Pradesh, India, 28°0'4.4"N, 95°35'9.6"E.
- 6. *Pseudolaguvia jiyaensis* (Tamang and Sinha, 2014) Arunachal Pradesh, Lower Dibang Valley District, Jiya stream, near Bolik village, approx. 14 km from Roing towards Shantipur, Assam, India, 28°00.377'N, 95°45.562'E, depth 149 meters.
- 7. *Pseudolaguvia magna* (Tamang and Sinha, 2014) Arunachal Pradesh, Lower Dibang Valley District, Jiya stream, near Bolik village, approx. 14 km from Roing towards Shantipur, Assam, India, 28°00.377'N, 95°45.562'E.
- 8. *Aborichthys waikhomi* (Singh et. al., 2018) Arunachal Pradesh, Sinkin river at Anpum, Lower Dibang Valley district

Recently recorded fish species from Lower Dibang Valley (Darshan et al., 2019):

- Anguilla bengalensis (Gray 1831)
- *Salmostoma phulo* (Hamilton 1822)
- Garra arupi Nebeshwar, Waikhom and Das 2009
- Neolissochilus hexastichus (McClelland 1839)
- Systomus immaculatus McClelland 1839
- *Systomus sarana* (Hamilton 1822)
- Schizothorax progastus (McClelland 1839)
- *Cyprinion semiplotum* (McClelland 1839)
- Botia rostrata Gunther 1868
- Lepidocephalichthys arunachalensis Datta and Barman 1984
- Aborichthys elongatus Hora 1921
- Aborichthys waikhomi Kosygin 2012
- Schistura zonata McClelland 1839
- Schistura devdevi Hora 1935
- *Schistura savona* (Hamilton 1822)
- Mustura harkishorei Das and Darshan 2017
- Ompok pabda (Hamilton 1822)
- Batasio batasio (Hamilton 1822)
- Mystus dibrugarensis Chaudhuri 1931
- Amblyceps laticeps (McClelland 1842)

- Exostoma labiatum (McClelland 1842)
- *Glyptothorax cavia* (Hamilton 1822)
- Pseudecheneis sirenica Vishwanath and Darshan 2007
- Pseudolaguvia jiyaensis Tamang and Sinha 2014
- Pseudolaguvia magna Tamang and Sinha 2014
- Xenentodon cancila (Hamilton 1822)
- Macrognathus pancalus Hamilton 1822
- Channa stewartii (Playfair 1867)
- Nandus nandus (Hamilton 1822)
- Badis assamensis Ahl 1937
- Microphis deocata (Hamilton 1822)
- *Leiodon cutcutia* (Hamilton 1822)

APPENDIX III: CHECKLIST OF BIRDS OF DIBANG VALLEY (Dalvi 2020, unpublished list)

S.No.	Family	Common Name	Scientific Name	WPA 1972	IUCN Redlist
1	Anatidae	Fulvous Whistling Duck Lesser Whistling	Dendrocygna bicolor	Sch IV	Least Concern
2	Anatidae	Duck	Dendrocygna javanica	Sch I	Least Concern
3	Anatidae	Greylag Goose	Anser anser	Sch IV	Least Concern
4	Anatidae	Gadwall	Mareca strepera	Sch IV	Least Concern
5	Anatidae	Eurasian Wigeon Indian Spot-billed	Mareca penelope	Sch IV	Least Concern
6	Anatidae	Duck	Anas poecilorhyncha	Sch IV	Least Concern
7	Anatidae	Tufted Duck	Aythya fuligula	Sch IV	Least Concern
8	Phasianidae	Hill Partridge Rufous-throated	Arborophila torqueola Arborophila	Sch IV	Least Concern
9	Phasianidae	Partridge	rufogularis	Sch IV	Least Concern
10	Phasianidae	White-cheeked Partridge Chestnut-breasted	Arborophila atrogularis	Sch IV	Near Threatened
11	Phasianidae	Partridge	Arborophila mandellii	Sch IV	Vulnerable
12	Phasianidae	Blood Pheasant	Ithaginis cruentus	Sch I	Least Concern
13	Phasianidae	Blyth's Tragopan	Tragopan blythii Lophophorus	Sch I	Vulnerable
14	Phasianidae	Himalayan Monal	impejanus	Sch I	Least Concern
15	Phasianidae	Sclater's Monal	Lophophorus sclateri	Sch I	Vulnerable
16	Phasianidae	Red Junglefowl	Gallus gallus	Sch IV	Least Concern
17	Phasianidae	Kalij Pheasant Grey Peacock-	Lophura leucomelanos Polyplectron	Sch IV	Least Concern
18	Phasianidae	Pheasant	bicalcaratum	Sch I	Least Concern
19	Ciconiidae	Asian Openbill	Anastomus oscitans	Sch IV	Least Concern
20	Ciconiidae	Black Stork	Ciconia nigra	Sch IV	Least Concern
21	Ciconiidae	Lesser Adjutant	Leptoptilos javanicus Ixobrychus	Sch IV	Vulnerable
22	Ardeidae	Cinnamon Bittern Black-crowned	cinnamomeus	Sch IV	Least Concern
23	Ardeidae	Night Heron	Nycticorax nycticorax	Sch IV	Least Concern
24	Ardeidae	Indian Pond Heron Chinese Pond	Ardeola grayii	Sch IV	Least Concern
25	Ardeidae	Heron	Ardeola bacchus	Sch IV	Least Concern
26	Ardeidae	Eastern Cattle Egret	Bubulcus coromandus	Sch IV	Least Concern
27	Ardeidae	Grey Heron	Ardea cinerea	Sch IV	Least Concern
28	Ardeidae	Purple Heron	Ardea purpurea	Sch IV	Least Concern
29	Ardeidae	Great Egret	Ardea alba	Sch IV	Least Concern
30	Ardeidae	Intermediate Egret	Ardea intermedia	Sch IV	Least Concern

31	Ardeidae	Little Egret	Egretta garzetta	Sch IV	Least Concern
32	Phalacrocoracidae	Little Cormorant	Microcarbo niger	Sch IV	Least Concern
33	Phalacrocoracidae	Great Cormorant	Phalacrocorax carbo	Sch IV	Least Concern
34	Pandionidae	Western Osprey White-rumped	Pandion haliaetus	Sch I	Least Concern Critically
35	Accipitridae	Vulture	Gyps bengalensis	Sch I	Endangered
36	Accipitridae	Crested Serpent Eagle	Spilornis cheela	Sch IV	Least Concern
37	Accipitridae	Short-toed Snake Eagle Mountain Hawk-	Circaetus gallicus	Sch IV	Least Concern
38	Accipitridae	Eagle Rufous-bellied	Nisaetus nipalensis	Sch IV	Least Concern
39	Accipitridae	Eagle	Lophotriorchis kienerii	Sch IV	Least Concern
40	Accipitridae	Black Eagle Greater Spotted	Ictinaetus malaiensis	Sch IV	Least Concern
41	Accipitridae	Eagle	Clanga clanga	Sch IV	Vulnerable
42	Accipitridae	Booted Eagle	Hieraaetus pennatus	Sch IV	Least Concern
43	Accipitridae	Steppe Eagle	Aquila nipalensis	Sch IV	Endangered
44	Accipitridae	Crested Goshawk	Accipiter trivirgatus	Sch IV	Least Concern
45	Accipitridae	Shikra	Accipiter badius	Sch IV	Least Concern
46	Accipitridae	Besra Eurasian	Accipiter virgatus	Sch IV	Least Concern
47	Accipitridae	Sparrowhawk	Accipiter nisus	Sch IV	Least Concern
48	Accipitridae	Northern Goshawk Western Marsh	Accipiter gentilis	Sch IV	Least Concern
49	Accipitridae	Harrier	Circus aeruginosus	Sch IV	Least Concern Near
50	Accipitridae	Pallid Harrier	Circus macrourus	Sch IV	Threatened
51	Accipitridae	Pied Harrier	Circus melanoleucos	Sch IV	Least Concern
52	Accipitridae	Black Kite	Milvus migrans	Sch IV	Least Concern
53	Accipitridae	Himalayan Buzzard	Buteo burmanicus	Sch IV	Least Concern
54	Accipitridae	Common Buzzard	Buteo buteo	Sch IV	Least Concern
55	Otididae	Bengal Florican White-breasted	Houbaropsis bengalensis Amaurornis	Sch I	Critically Endangered
56	Rallidae	Waterhen	phoenicurus	Sch IV	Least Concern
57	Rallidae	Common Moorhen	Gallinula chloropus	Sch IV	Least Concern Near
58	Charadriidae	Northern Lapwing Red-wattled	Vanellus vanellus	Sch IV	Threatened
59	Charadriidae	Lapwing	Vanellus indicus	Sch IV	Least Concern
60	Charadriidae	Little Ringed Plover	Charadrius dubius Charadrius	Sch IV	Least Concern
61	Charadriidae	Kentish Plover Pheasant-tailed	alexandrinus Hydrophasianus	Sch IV	Least Concern
62	Jacanidae	Jacana	chirurgus	Sch IV	Least Concern

63	Scolopacidae	Eurasian Woodcock	Scolopax rusticola	Sch IV	Least Concern
64	Scolopacidae	Solitary Snipe	Gallinago solitaria	Sch IV	Least Concern
65	Scolopacidae	Wood Snipe	Gallinago nemoricola	Sch IV	Vulnerable
66	Scolopacidae	Pin-tailed Snipe Common	Gallinago stenura	Sch IV	Least Concern
67	Scolopacidae	Greenshank	Tringa nebularia	Sch IV	Least Concern
68	Scolopacidae	Green Sandpiper	Tringa ochropus	Sch IV	Least Concern
69	Scolopacidae	Wood Sandpiper	Tringa glareola	Sch IV	Least Concern
70	Scolopacidae	Common Sandpiper	Actitis hypoleucos	Sch IV	Least Concern
71	Scolopacidae	Temminck's Stint	Calidris temminckii	Sch IV	Least Concern
72	Glareolidae	Small Pratincole	Glareola lactea	Sch IV	Least Concern
73	Laridae	Pallas's Gull Speckled Wood	Ichthyaetus ichthyaetus	Sch IV	Least Concern
74	Columbidae	Pigeon	Columba hodgsonii	Sch IV	Least Concern
75	Columbidae	Ashy Wood Pigeon	Columba pulchricollis	Sch IV	Least Concern
76	Columbidae	Pale-capped Pigeon Oriental Turtle	Columba punicea	Sch IV	Vulnerable
77	Columbidae	Dove	Streptopelia orientalis	Sch IV	Least Concern
78	Columbidae	Spotted Dove Barred Cuckoo-	Spilopelia chinensis	Sch IV	Least Concern
79	Columbidae	Dove Common Emerald	Macropygia unchall	Sch IV	Least Concern
80	Columbidae	Dove	Chalcophaps indica	Sch IV	Least Concern Near
81	Columbidae	Ashy-headed Green Pigeon Green Imperial	Treron phayrei	Sch IV	Threatened
82	Columbidae	Pigeon Mountain Imperial	Ducula aenea	Sch IV	Least Concern
83	Columbidae	Pigeon	Ducula badia	Sch IV	Least Concern
84	Cuculidae	Greater Coucal	Centropus sinensis	Sch IV	Least Concern
85	Cuculidae	Lesser Coucal Green-billed	Centropus bengalensis	Sch IV	Least Concern
86	Cuculidae	Malkoha	Phaenicophaeus tristis Eudynamys	Sch IV	Least Concern
87	Cuculidae	Asian Koel Asian Emerald	scolopaceus Chrysococcyx	Sch IV	Least Concern
88	Cuculidae	Cuckoo Banded Bay	maculatus	Sch IV	Least Concern
89	Cuculidae	Cuckoo	Cacomantis sonneratii	Sch IV	Least Concern
90	Cuculidae	Plaintive Cuckoo Square-tailed	Cacomantis merulinus	Sch IV	Least Concern
91	Cuculidae	Drongo-Cuckoo Large Hawk-	Surniculus lugubris Hierococcyx	Sch IV	Least Concern
92	Cuculidae	Cuckoo Common Hawk-	sparverioides	Sch IV	Least Concern
93	Cuculidae	Cuckoo Hodgson's Hawk-	Hierococcyx varius	Sch IV	Least Concern
94	Cuculidae	Cuckoo	Hierococcyx nisicolor	Sch IV	Least Concern

95	Cuculidae	Lesser Cuckoo	Cuculus poliocephalus	Sch IV	Least Concern
96	Cuculidae	Indian Cuckoo	Cuculus micropterus	Sch IV	Least Concern
97	Cuculidae	Himalayan Cuckoo	Cuculus saturatus	Sch IV	Least Concern
98	Cuculidae	Common Cuckoo	Cuculus canorus	Sch IV	Least Concern
99	Tytonidae	Western Barn Owl Mountain Scops	Tyto alba	Sch IV	Least Concern
100	Strigidae	Owl	Otus spilocephalus	Sch IV	Least Concern
101	Strigidae	Collared Scops Owl	Otus lettia	Sch IV	Least Concern
102	Strigidae	Oriental Scops Owl	Otus sunia	Sch IV	Least Concern
103	Strigidae	Brown Fish Owl	Ketupa zeylonensis	Sch IV	Least Concern
104	Strigidae	Brown Wood Owl	Strix leptogrammica	Sch IV	Least Concern
105	Strigidae	Himalayan Owl	Strix nivicolum	Sch IV	Least Concern
106	Strigidae	Collared Owlet	Glaucidium brodiei	Sch IV	Least Concern
107	Strigidae	Asian Barred Owlet	Glaucidium cuculoides	Sch IV	Least Concern
108	Strigidae	Spotted Owlet	Athene brama	Sch IV	Least Concern
109	Strigidae	Long-eared Owl Hodgson's	Asio otus Batrachostomus	Sch IV	Least Concern
110	Podargidae	Frogmouth Large-tailed	hodgsoni	Sch IV	Least Concern
111	Caprimulgidae	Nightjar	Caprimulgus macrurus Aerodramus	Sch IV	Least Concern
112	Apodidae	Himalayan Swiftlet White-throated	brevirostris Hirundapus	Sch IV	Least Concern
113	Apodidae	Needletail	caudacutus	Sch IV	Least Concern
114	Apodidae	Asian Palm Swift	Cypsiurus balasiensis	Sch IV	Least Concern
115	Apodidae	Dark-rumped Swift	Apus acuticauda Harpactes	Sch IV	Vulnerable
116	Trogonidae	Red-headed Trogon	erythrocephalus	Sch IV	Least Concern Near
117	Trogonidae	Ward's Trogon	Harpactes wardi	Sch IV	Threatened
118	Alcedinidae	Ruddy Kingfisher White-throated	Halcyon coromanda	Sch IV	Least Concern
119	Alcedinidae	Kingfisher Blue-eared	Halcyon smyrnensis	Sch IV	Least Concern
120	Alcedinidae	Kingfisher	Alcedo meninting	Sch IV	Least Concern
121	Alcedinidae	Crested Kingfisher	Megaceryle lugubris	Sch IV	Least Concern
122	Alcedinidae	Pied Kingfisher Blue-bearded Bee-	Ceryle rudis	Sch IV	Least Concern
123	Meropidae	eater	Nyctyornis athertoni	Sch IV	Least Concern
124	Meropidae	Green Bee-eater Chestnut-headed	Merops orientalis	Sch IV	Least Concern
125	Meropidae	Bee-eater	Merops leschenaulti	Sch IV	Least Concern
126	Upupidae	Eurasian Hoopoe	Upupa epops	Sch IV	Least Concern
127	Bucerotidae	Rufous-necked Hornbill	Aceros nipalensis	Sch I	Vulnerable

128	Bucerotidae	Wreathed Hornbill	Rhyticeros undulatus	Sch I	Least Concern
129	Megalaimidae	Great Barbet	Psilopogon virens	Sch IV	Least Concern
130	Megalaimidae	Lineated Barbet Golden-throated	Psilopogon lineatus	Sch IV	Least Concern
131	Megalaimidae	Barbet Blue-throated	Psilopogon franklinii	Sch IV	Least Concern
132	Megalaimidae	Barbet	Psilopogon asiaticus	Sch IV	Least Concern
133	Megalaimidae	Blue-eared Barbet	Psilopogon duvaucelii	Sch IV	Least Concern
134	Picidae	Speckled Piculet White-browed	Picumnus innominatus	Sch IV	Least Concern
135	Picidae	Piculet Rufous-bellied	Sasia ochracea Dendrocopos	Sch IV	Least Concern
136	Picidae	Woodpecker Fulvous-breasted	hyperythrus	Sch IV	Least Concern
137	Picidae	Woodpecker Crimson-breasted	Dendrocopos macei	Sch IV	Least Concern
138	Picidae	Woodpecker Darjeeling	Dryobates cathpharius Dendrocopos	Sch IV	Least Concern
139	Picidae	Woodpecker	darjellensis Chrysophlegma	Sch IV	Least Concern
140	Picidae	Greater Yellownape	flavinucha	Sch IV	Least Concern
141	Picidae	Lesser Yellownape Grey-headed	Picus chlorolophus	Sch IV	Least Concern
142	Picidae	Woodpecker Pale-headed	Picus canus	Sch IV	Least Concern
143	Picidae	Woodpecker	Gecinulus grantia	Sch IV	Least Concern
144	Picidae	Bay Woodpecker	Blythipicus pyrrhotis Micropternus	Sch IV	Least Concern
145	Picidae	Rufous Woodpecker Great Slaty	brachyurus Mulleripicus	Sch IV	Least Concern
146	Picidae	Woodpecker	pulverulentus	Sch IV	Vulnerable
147	Falconidae	Amur Falcon	Falco amurensis	Sch IV	Least Concern
148	Falconidae	Eurasian Hobby	Falco subbuteo	Sch IV	Least Concern
149	Falconidae	Oriental Hobby	Falco severus	Sch IV	Least Concern
150	Falconidae	Peregrine Falcon	Falco peregrinus	Sch I	Least Concern
151	Psittaculidae	Grey-headed Parakeet Red-breasted	Psittacula finschii	Sch IV	Near Threatened Near
152	Psittaculidae	Parakeet Rose-ringed	Psittacula alexandri	Sch IV	Threatened
153	Psittaculidae	Parakeet Long-tailed	Psittacula krameri	Sch IV	Least Concern
154	Eurylaimidae	Broadbill Silver-breasted	Psarisomus dalhousiae	Sch IV	Least Concern
155	Eurylaimidae	Broadbill	Serilophus lunatus	Sch IV	Least Concern
156	Pittidae	Hooded Pitta Bar-winged	Pitta sordida	Sch IV	Least Concern
157	Tephrodornithidae	Flycatcher-shrike	Hemipus picatus	Sch IV	Least Concern
158	Tephrodornithidae	Large Woodshrike	Tephrodornis virgatus	Sch IV	Least Concern

159	Aegithinidae	Common Iora	Aegithina tiphia	Sch IV	Least Concern
160	Campephagidae	Large Cuckooshrike	Coracina macei	Sch IV	Least Concern
161	Campephagidae	Black-winged Cuckooshrike Grey-chinned	Lalage melaschistos	Sch IV	Least Concern
162	Campephagidae	Minivet	Pericrocotus solaris	Sch IV	Least Concern
163	Campephagidae	Long-tailed Minivet	Pericrocotus ethologus Pericrocotus	Sch IV	Least Concern
164	Campephagidae	Short-billed Minivet	brevirostris	Sch IV	Least Concern
165	Campephagidae	Scarlet Minivet	Pericrocotus speciosus	Sch IV	Least Concern
166	Laniidae	Brown Shrike	Lanius cristatus	Sch IV	Least Concern
167	Laniidae	Burmese Shrike	Lanius collurioides	Sch IV	Least Concern
168	Laniidae	Long-tailed Shrike	Lanius schach	Sch IV	Least Concern
169	Laniidae	Grey-backed Shrike Black-headed	Lanius tephronotus	Sch IV	Least Concern
170	Vireonidae	Shrike-Babbler Green Shrike-	Pteruthius rufiventer Pteruthius	Sch IV	Least Concern
171	Vireonidae	Babbler Black-eared Shrike-	xanthochlorus	Sch IV	Least Concern
172	Vireonidae	Babbler Black-hooded	Pteruthius melanotis	Sch IV	Least Concern
173	Oriolidae	Oriole	Oriolus xanthornus	Sch IV	Least Concern
174	Oriolidae	Maroon Oriole	Oriolus traillii	Sch IV	Least Concern
175	Dicruridae	Black Drongo	Dicrurus macrocercus	Sch IV	Least Concern
176	Dicruridae	Ashy Drongo	Dicrurus leucophaeus	Sch IV	Least Concern
177	Dicruridae	Bronzed Drongo Lesser Racket-tailed	Dicrurus aeneus	Sch IV	Least Concern
178	Dicruridae	Drongo Greater Racket-	Dicrurus remifer	Sch IV	Least Concern
179	Dicruridae	tailed Drongo White-throated	Dicrurus paradiseus	Sch IV	Least Concern
180	Rhipiduridae	Fantail Black-naped	Rhipidura albicollis	Sch IV	Least Concern
181	Monarchidae	Monarch Blyth's Paradise	Hypothymis azurea	Sch IV	Least Concern
182	Monarchidae	Flycatcher	Terpsiphone affinis	Sch IV	Least Concern
183	Corvidae	Eurasian Jay Common Green	Garrulus glandarius	Sch IV	Least Concern
184	Corvidae	Magpie	Cissa chinensis	Sch IV	Least Concern
185	Corvidae	Rufous Treepie	Dendrocitta vagabunda	Sch IV	Least Concern
186	Corvidae	Grey Treepie	Dendrocitta formosae	Sch IV	Least Concern
187	Corvidae	Collared Treepie	Dendrocitta frontalis	Sch IV	Least Concern
188	Corvidae	House Crow	Corvus splendens	Sch IV	Least Concern
189	Corvidae	Large-billed Crow Grey-headed	Corvus macrorhynchos	Sch IV	Least Concern
190	Stenostiridae	Canary-flycatcher	Culicicapa ceylonensis	Sch IV	Least Concern
191	Paridae	Yellow-browed Tit	Sylviparus modestus	Sch IV	Least Concern

192	Paridae	Sultan Tit	Melanochlora sultanea	Sch IV	Least Concern
193	Paridae	Rufous-vented Tit	Periparus rubidiventris	Sch IV	Least Concern
194	Paridae	Coal Tit	Periparus ater	Sch IV	Least Concern
195	Paridae	Grey Crested Tit	Lophophanes dichrous	Sch IV	Least Concern
196	Paridae	Green-backed Tit	Parus monticolus Machlolophus	Sch IV	Least Concern
197	Paridae	Yellow-cheeked Tit	spilonotus	Sch IV	Least Concern
198	Alaudidae	Bengal Bush Lark	Mirafra assamica	Sch IV	Least Concern
199	Alaudidae	Oriental Skylark	Alauda gulgula	Sch IV	Least Concern
200	Pycnonotidae	Striated Bulbul Black-crested	Pycnonotus striatus	Sch IV	Least Concern
201	Pycnonotidae	Bulbul Red-whiskered	Pycnonotus flaviventris	Sch IV	Least Concern
202	Pycnonotidae	Bulbul	Pycnonotus jocosus	Sch IV	Least Concern
203	Pycnonotidae	Red-vented Bulbul White-throated	Pycnonotus cafer	Sch IV	Least Concern
204	Pycnonotidae	Bulbul	Alophoixus flaveolus	Sch IV	Least Concern
205	Pycnonotidae	Mountain Bulbul	Ixos mcclellandii	Sch IV	Least Concern
206	Pycnonotidae	Ashy Bulbul	Hemixos flavala	Sch IV	Least Concern
207	Hirundinidae	Barn Swallow	Hirundo rustica	Sch IV	Least Concern
208	Hirundinidae	Asian House Martin	Delichon dasypus	Sch IV	Least Concern
209	Hirundinidae	Nepal House Martin	Delichon nipalense	Sch IV	Least Concern
210	Hirundinidae	Striated Swallow Yellow-bellied	Cecropis striolata Abroscopus	Sch IV	Least Concern
211	Cettiidae	Warbler	superciliaris	Sch IV	Least Concern
212	Cettiidae	Rufous-faced Warbler Black-faced	Abroscopus albogularis	Sch IV	Least Concern
213	Cettiidae	Warbler	Abroscopus schisticeps	Sch IV	Least Concern
214	Cettiidae	Mountain Tailorbird Broad-billed	Phyllergates cucullatus	Sch IV	Least Concern
215	Cettiidae	Warbler	Tickellia hodgsoni	Sch IV	Least Concern
216	Cettiidae	Grey-bellied Tesia	Tesia cyaniventer	Sch IV	Least Concern
217	Cettiidae	Slaty-bellied Tesia Chestnut-headed	Tesia olivea Cettia	Sch IV	Least Concern
218	Cettiidae	Tesia	castaneocoronata	Sch IV	Least Concern
219	Phylloscopidae	Dusky Warbler Tickell's Leaf	Phylloscopus fuscatus	Sch IV	Least Concern
220	Phylloscopidae	Warbler	Phylloscopus affinis	Sch IV	Least Concern
221	Phylloscopidae	Buff-barred Warbler Ashy-throated	Phylloscopus pulcher Phylloscopus	Sch IV	Least Concern
222	Phylloscopidae	Warbler Yellow-browed	maculipennis	Sch IV	Least Concern
223	Phylloscopidae	Warbler	Phylloscopus inornatus Phylloscopus	Sch IV	Least Concern
224	Phylloscopidae	Greenish Warbler	trochiloides	Sch IV	Least Concern

225	Phylloscopidae	Large-billed Leaf Warbler	Phylloscopus magnirostris	Sch IV	Least Concern
223	Thynoscopidae	Blyth's Leaf	Phylloscopus	SCII I V	Least Concern
226	Phylloscopidae	Warbler Yellow-vented	reguloides	Sch IV	Least Concern
227	Phylloscopidae	Warbler Grey-hooded	Phylloscopus cantator Phylloscopus	Sch IV	Least Concern
228	Phylloscopidae	Warbler White-spectacled	xanthoschistos Phylloscopus	Sch IV	Least Concern
229	Phylloscopidae	Warbler Grey-crowned	intermedius Phylloscopus	Sch IV	Least Concern
230	Phylloscopidae	Warbler	tephrocephalus	Sch IV	Least Concern
231	Phylloscopidae	Whistler's Warbler Grey-cheeked	Phylloscopus whistleri Phylloscopus	Sch IV	Least Concern
232	Phylloscopidae	Warbler Chestnut-crowned	poliogenys Phylloscopus	Sch IV	Least Concern
233	Phylloscopidae	Warbler	castaniceps	Sch IV	Least Concern
234	Acrocephalidae	Paddyfield Warbler Thick-billed	Acrocephalus agricola	Sch IV	Least Concern
235	Acrocephalidae	Warbler	Arundinax aedon	Sch IV	Least Concern
236	Locustellidae	Striated Grassbird	Megalurus palustris	Sch IV	Least Concern
237	Cisticolidae	Zitting Cisticola	Cisticola juncidis	Sch IV	Least Concern
238	Cisticolidae	Striated Prinia Black-throated	Prinia crinigera	Sch IV	Least Concern
239	Cisticolidae	Prinia Grey-breasted	Prinia atrogularis	Sch IV	Least Concern
240	Cisticolidae	Prinia Prinia	Prinia hodgsonii	Sch IV	Least Concern
241	Cisticolidae	Graceful Prinia Yellow-bellied	Prinia gracilis	Sch IV	Least Concern
242	Cisticolidae	Prinia	Prinia flaviventris	Sch IV	Least Concern
243	Cisticolidae	Ashy Prinia	Prinia socialis	Sch IV	Least Concern
244	Cisticolidae	Plain Prinia	Prinia inornata	Sch IV	Least Concern
245	Cisticolidae	Common Tailorbird Spot-breasted	Orthotomus sutorius Pomatorhinus	Sch IV	Least Concern
246	Timaliidae	Scimitar Babbler White-browed	mcclellandi Pomatorhinus	Sch IV	Least Concern
247	Timaliidae	Scimitar Babbler Streak-breasted	schisticeps	Sch IV	Least Concern
248	Timaliidae	Scimitar Babbler Red-billed Scimitar	Pomatorhinus ruficollis Pomatorhinus	Sch IV	Least Concern
249	Timaliidae	Babbler Coral-billed	ochraceiceps Pomatorhinus	Sch IV	Least Concern
250	Timaliidae	Scimitar Babbler Slender-billed	ferruginosus Pomatorhinus	Sch IV	Least Concern
251	Timaliidae	Scimitar Babbler Bar-winged Wren-	superciliaris Spelaeornis	Sch IV	Least Concern
252	Timaliidae	Babbler Grey-throated	troglodytoides	Sch IV	Least Concern
253	Timaliidae	Babbler Buff-chested	Stachyris nigriceps Stachyridopsis	Sch IV	Least Concern
254	Timaliidae	Babbler	ambigua	Sch IV	Least Concern

		D.,f.,,,, 4			
255	Timaliidae	Rufous-capped Babbler	Stachyridopsis ruficeps Stachyridopsis	Sch IV	Least Concern
256	Timaliidae	Golden Babbler Chestnut-capped	chrysaea	Sch IV	Least Concern
257	Timaliidae	Babbler Pin-striped Tit-	Timalia pileata	Sch IV	Least Concern
258	Timaliidae	Babbler Yellow-throated	Macronus gularis	Sch IV	Least Concern
259	Pellorneidae	Fulvetta Rufous-winged	Alcippe cinerea	Sch IV	Least Concern
260	Pellorneidae	Fulvetta Rufous-throated	Alcippe castaneceps	Sch IV	Least Concern
261	Pellorneidae	Fulvetta Brown-cheeked	Alcippe rufogularis	Sch IV	Least Concern
262	Pellorneidae	Fulvetta	Alcippe poioicephala	Sch IV	Least Concern
263	Pellorneidae	Nepal Fulvetta Streaked Wren-	Alcippe nipalensis Napothera	Sch IV	Least Concern
264	Pellorneidae	Babbler Eyebrowed Wren-	brevicaudata	Sch IV	Least Concern
265	Pellorneidae	Babbler Long-billed Wren-	Napothera epilepidota	Sch IV	Least Concern
266	Pellorneidae	Babbler White-hooded	Rimator malacoptilus Gampsorhynchus	Sch IV	Least Concern
267	Pellorneidae	Babbler Spot-throated	rufulus	Sch IV	Least Concern
268	Pellorneidae	Babbler	Pellorneum albiventre	Sch IV	Least Concern
		2000101		~	
269	Pellorneidae	Marsh Babbler	Pellorneum palustre	Sch IV	Vulnerable
269	Pellorneidae	Marsh Babbler Puff-throated Babbler	Pellorneum palustre	Sch IV	Vulnerable
269270	Pellorneidae Pellorneidae	Marsh Babbler Puff-throated Babbler Buff-breasted Babbler Striated Babbler	Pellorneum palustre Pellorneum ruficeps	Sch IV Sch IV	Vulnerable Least Concern
269270271	Pellorneidae Pellorneidae Pellorneidae	Marsh Babbler Puff-throated Babbler Buff-breasted Babbler	Pellorneum palustre Pellorneum ruficeps Pellorneum tickelli	Sch IV Sch IV Sch IV	Vulnerable Least Concern Least Concern
269270271272	Pellorneidae Pellorneidae Pellorneidae Leiothrichidae	Marsh Babbler Puff-throated Babbler Buff-breasted Babbler Striated Babbler White-crested Laughingthrush Rufous-chinned Laughingthrush	Pellorneum palustre Pellorneum ruficeps Pellorneum tickelli Argya earlei Garrulax leucolophus	Sch IV Sch IV Sch IV Sch IV	Vulnerable Least Concern Least Concern Least Concern
269270271272273	Pellorneidae Pellorneidae Pellorneidae Leiothrichidae Leiothrichidae	Marsh Babbler Puff-throated Babbler Buff-breasted Babbler Striated Babbler White-crested Laughingthrush Rufous-chinned	Pellorneum palustre Pellorneum ruficeps Pellorneum tickelli Argya earlei Garrulax leucolophus Ianthocincla	Sch IV Sch IV Sch IV Sch IV	Vulnerable Least Concern Least Concern Least Concern Least Concern
269270271272273274	Pellorneidae Pellorneidae Pellorneidae Leiothrichidae Leiothrichidae Leiothrichidae	Marsh Babbler Puff-throated Babbler Buff-breasted Babbler Striated Babbler White-crested Laughingthrush Rufous-chinned Laughingthrush Spotted Laughingthrush Lesser Necklaced Laughingthrush	Pellorneum palustre Pellorneum ruficeps Pellorneum tickelli Argya earlei Garrulax leucolophus Ianthocincla rufogularis	Sch IV Sch IV Sch IV Sch IV Sch IV	Vulnerable Least Concern Least Concern Least Concern Least Concern Least Concern
269270271272273274275	Pellorneidae Pellorneidae Pellorneidae Leiothrichidae Leiothrichidae Leiothrichidae Leiothrichidae	Marsh Babbler Puff-throated Babbler Buff-breasted Babbler Striated Babbler White-crested Laughingthrush Rufous-chinned Laughingthrush Spotted Laughingthrush Lesser Necklaced Laughingthrush Greater Necklaced Laughingthrush	Pellorneum palustre Pellorneum ruficeps Pellorneum tickelli Argya earlei Garrulax leucolophus Ianthocincla rufogularis Ianthocincla ocellata	Sch IV	Vulnerable Least Concern Least Concern Least Concern Least Concern Least Concern Least Concern
 269 270 271 272 273 274 275 276 	Pellorneidae Pellorneidae Pellorneidae Leiothrichidae Leiothrichidae Leiothrichidae Leiothrichidae Leiothrichidae	Marsh Babbler Puff-throated Babbler Buff-breasted Babbler Striated Babbler White-crested Laughingthrush Rufous-chinned Laughingthrush Spotted Laughingthrush Lesser Necklaced Laughingthrush Greater Necklaced Laughingthrush Rufous-necked Laughingthrush	Pellorneum palustre Pellorneum ruficeps Pellorneum tickelli Argya earlei Garrulax leucolophus Ianthocincla rufogularis Ianthocincla ocellata Garrulax monileger	Sch IV	Vulnerable Least Concern
269 270 271 272 273 274 275 276 277	Pellorneidae Pellorneidae Pellorneidae Leiothrichidae Leiothrichidae Leiothrichidae Leiothrichidae Leiothrichidae Leiothrichidae	Marsh Babbler Puff-throated Babbler Buff-breasted Babbler Striated Babbler White-crested Laughingthrush Rufous-chinned Laughingthrush Spotted Laughingthrush Lesser Necklaced Laughingthrush Greater Necklaced Laughingthrush Rufous-necked Laughingthrush Rufous-necked Laughingthrush Grey-sided Laughingthrush	Pellorneum palustre Pellorneum ruficeps Pellorneum tickelli Argya earlei Garrulax leucolophus Ianthocincla rufogularis Ianthocincla ocellata Garrulax monileger Pterorhinus pectoralis	Sch IV	Vulnerable Least Concern
269 270 271 272 273 274 275 276 277	Pellorneidae Pellorneidae Pellorneidae Leiothrichidae Leiothrichidae Leiothrichidae Leiothrichidae Leiothrichidae Leiothrichidae Leiothrichidae Leiothrichidae	Marsh Babbler Puff-throated Babbler Buff-breasted Babbler Striated Babbler White-crested Laughingthrush Rufous-chinned Laughingthrush Spotted Laughingthrush Lesser Necklaced Laughingthrush Greater Necklaced Laughingthrush Rufous-necked Laughingthrush Rufous-necked Laughingthrush	Pellorneum palustre Pellorneum ruficeps Pellorneum tickelli Argya earlei Garrulax leucolophus Ianthocincla rufogularis Ianthocincla ocellata Garrulax monileger Pterorhinus pectoralis Pterorhinus ruficollis	Sch IV	Vulnerable Least Concern
269 270 271 272 273 274 275 276 277 278 279	Pellorneidae Pellorneidae Pellorneidae Leiothrichidae Leiothrichidae Leiothrichidae Leiothrichidae Leiothrichidae Leiothrichidae Leiothrichidae Leiothrichidae Leiothrichidae	Marsh Babbler Puff-throated Babbler Buff-breasted Babbler Striated Babbler White-crested Laughingthrush Rufous-chinned Laughingthrush Spotted Laughingthrush Lesser Necklaced Laughingthrush Greater Necklaced Laughingthrush Rufous-necked Laughingthrush Rufous-necked Laughingthrush Grey-sided Laughingthrush Spot-breasted Laughingthrush	Pellorneum palustre Pellorneum ruficeps Pellorneum tickelli Argya earlei Garrulax leucolophus Ianthocincla rufogularis Ianthocincla ocellata Garrulax monileger Pterorhinus pectoralis Pterorhinus ruficollis	Sch IV	Vulnerable Least Concern

283	Leiothrichidae	Scaly Laughingthrush	Trochalopteron subunicolor	Sch IV	Least Concern
203		Black-faced	Sucumeoro	Senii	Zeast Concern
284	Leiothrichidae	Laughingthrush Chestnut-crowned	Trochalopteron affine Trochalopteron	Sch IV	Least Concern
285	Leiothrichidae	Laughingthrush Assam	erythrocephalum Trochalopteron	Sch IV	Least Concern
286	Leiothrichidae	Laughingthrush Elliot's	chrysopterum	Sch IV	Least Concern
287	Leiothrichidae	Laughingthrush	Trochalopteron elliotii	Sch IV	Least Concern
288	Leiothrichidae	Himalayan Cutia	Cutia nipalensis Actinodura	Sch IV	Least Concern
289	Leiothrichidae	Blue-winged Minla	cyanouroptera	Sch IV	Least Concern
290	Leiothrichidae	Red-tailed Minla	Minla ignotincta	Sch IV	Least Concern
291	Leiothrichidae	Red-faced Liocichla Rusty-fronted	Liocichla phoenicea	Sch IV	Least Concern
292	Leiothrichidae	Barwing Streak-throated	Actinodura egertoni	Sch IV	Least Concern
293	Leiothrichidae	Barwing	Actinodura waldeni	Sch IV	Least Concern
294	Leiothrichidae	Red-billed Leiothrix Rufous-backed	Leiothrix lutea	Sch IV	Least Concern
295	Leiothrichidae	Sibia	Leioptila annectens	Sch IV	Least Concern
296	Leiothrichidae	Grey Sibia	Heterophasia gracilis	Sch IV	Least Concern
297	Leiothrichidae	Beautiful Sibia	Heterophasia pulchella	Sch IV	Least Concern
298	Leiothrichidae	Long-tailed Sibia	Heterophasia picaoides	Sch IV	Least Concern
299	Sylviidae	Fire-tailed Myzornis Golden-breasted	Myzornis pyrrhoura	Sch IV	Least Concern
300	Sylviidae	Fulvetta	Lioparus chrysotis	Sch IV	Least Concern
301	Sylviidae	Jerdon's Babbler	Chrysomma altirostre	Sch IV	Vulnerable
302	Sylviidae	Brown Parrotbill	Cholornis unicolor	Sch IV	Least Concern
303	Sylviidae	Fulvous Parrotbill Black-throated	Suthora fulvifrons	Sch IV	Least Concern
304	Sylviidae	Parrotbill Rufous-headed	Suthora nipalensis	Sch IV	Least Concern
305	Sylviidae	Parrotbill Grey-headed	Psittiparus bakeri	Sch IV	Least Concern
306	Sylviidae	Parrotbill Black-breasted	Psittiparus gularis Paradoxornis	Sch IV	Least Concern
307	Sylviidae	Parrotbill Pale-billed	flavirostris Chleuasicus	Sch IV	Vulnerable
308	Sylviidae	Parrotbill	atrosuperciliaris	Sch IV	Least Concern
309	Zosteropidae	Striated Yuhina White-naped	Yuhina castaniceps	Sch IV	Least Concern
310	Zosteropidae	Yuhina	Yuhina bakeri	Sch IV	Least Concern
311	Zosteropidae	Whiskered Yuhina Stripe-throated	Yuhina flavicollis	Sch IV	Least Concern
312	Zosteropidae	Yuhina Rufous-vented	Yuhina gularis	Sch IV	Least Concern
313	Zosteropidae	Yuhina	Yuhina occipitalis	Sch IV	Least Concern

		Black-chinned			
314	Zosteropidae	Yuhina Asian Fairy-	Yuhina nigrimenta	Sch IV	Least Concern
315	Irenidae	bluebird Chestnut-vented	Irena puella	Sch IV	Least Concern
316	Sittidae	Nuthatch Chestnut-bellied	Sitta nagaensis	Sch IV	Least Concern
317	Sittidae	Nuthatch White-tailed	Sitta cinnamoventris	Sch IV	Least Concern
318	Sittidae	Nuthatch Velvet-fronted	Sitta himalayensis	Sch IV	Least Concern
319	Sittidae	Nuthatch	Sitta frontalis	Sch IV	Least Concern
320	Sittidae	Beautiful Nuthatch Rusty-flanked	Sitta formosa	Sch IV	Vulnerable
321	Certhiidae	Treecreeper Spot-winged	Certhia nipalensis	Sch IV	Least Concern
322	Sturnidae	Starling	Saroglossa spilopterus	Sch IV	Least Concern
323	Sturnidae	Common Hill Myna	Gracula religiosa	Sch I	Least Concern
324	Sturnidae	Great Myna	Acridotheres grandis	Sch IV	Least Concern
325	Sturnidae	Jungle Myna	Acridotheres fuscus	Sch IV	Least Concern
326	Sturnidae	Common Myna Chestnut-tailed	Acridotheres tristis	Sch IV	Least Concern
327	Sturnidae	Starling Orange-headed	Sturnia malabarica	Sch IV	Least Concern
328	Turdidae	Thrush	Geokichla citrina	Sch IV	Least Concern
329	Turdidae	Long-tailed Thrush	Zoothera dixoni	Sch IV	Least Concern
330	Turdidae	Long-billed Thrush Black-breasted	Zoothera monticola	Sch IV	Least Concern
331	Turdidae	Thrush White-collared	Turdus dissimilis	Sch IV	Least Concern
332	Turdidae	Blackbird Grey-winged	Turdus albocinctus	Sch IV	Least Concern
333	Turdidae	Blackbird	Turdus boulboul	Sch IV	Least Concern
334	Turdidae	Chestnut Thrush	Turdus rubrocanus	Sch IV	Least Concern
335	Turdidae	Grey-sided Thrush	Turdus feae	Sch IV	Vulnerable
336	Turdidae	Eyebrowed Thrush Black-throated	Turdus obscurus	Sch IV	Least Concern
337	Turdidae	Thrush Red-throated	Turdus atrogularis	Sch IV	Least Concern
338	Turdidae	Thrush	Turdus ruficollis	Sch IV	Least Concern
339	Turdidae	Dusky Thrush	Turdus eunomus	Sch IV	Least Concern
340	Turdidae	Purple Cochoa	Cochoa purpurea	Sch IV	Least Concern
341	Turdidae	Green Cochoa Oriental Magpie-	Cochoa viridis	Sch IV	Least Concern
342	Muscicapidae	Robin White-rumped	Copsychus saularis Copsychus	Sch IV	Least Concern
343	Muscicapidae	Shama Dark-sided	malabaricus	Sch IV	Least Concern
344	Muscicapidae	Flycatcher	Muscicapa sibirica	Sch IV	Least Concern

		г .			
345	Muscicapidae	Ferruginous Flycatcher White-gorgeted	Muscicapa ferruginea	Sch IV	Least Concern
346	Muscicapidae	Flycatcher Rufous-bellied	Anthipes monileger	Sch IV	Least Concern
347	Muscicapidae	Niltava	Niltava sundara	Sch IV	Least Concern
348	Muscicapidae	Vivid Niltava	Niltava vivida	Sch IV	Least Concern
349	Muscicapidae	Large Niltava	Niltava grandis	Sch IV	Least Concern
350	Muscicapidae	Small Niltava	Niltava macgrigoriae	Sch IV	Least Concern
351	Muscicapidae	Verditer Flycatcher	Eumyias thalassinus	Sch IV	Least Concern
352	Muscicapidae	Gould's Shortwing	Heteroxenicus stellatus	Sch IV	Least Concern
353	Muscicapidae	Rusty-bellied Shortwing	Brachypteryx hyperythra Brachypteryx	Sch IV	Near Threatened
354	Muscicapidae	Lesser Shortwing	leucophris	Sch IV	Least Concern
355	Muscicapidae	Indian Blue Robin	Larvivora brunnea	Sch IV	Least Concern
356	Muscicapidae	Bluethroat	Luscinia svecica	Sch IV	Least Concern
357	Muscicapidae	Siberian Rubythroat	Calliope calliope	Sch IV	Least Concern
358	Muscicapidae	White-tailed Robin	Myiomela leucura	Sch IV	Least Concern
359	Muscicapidae	Rufous-breasted Bush Robin White-browed Bush	Tarsiger hyperythrus	Sch IV	Least Concern
360	Muscicapidae	Robin	Tarsiger indicus	Sch IV	Least Concern
361	Muscicapidae	Golden Bush Robin	Tarsiger chrysaeus	Sch IV	Least Concern
362	Muscicapidae	Little Forktail Black-backed	Enicurus scouleri	Sch IV	Least Concern
363	Muscicapidae	Forktail Slaty-backed	Enicurus immaculatus	Sch IV	Least Concern
364	Muscicapidae	Forktail White-crowned	Enicurus schistaceus	Sch IV	Least Concern
365	Muscicapidae	Forktail	Enicurus leschenaulti	Sch IV	Least Concern
366	Muscicapidae	Spotted Forktail	Enicurus maculatus	Sch IV	Least Concern
367	Muscicapidae	Blue Whistling Thrush	Myophonus caeruleus	Sch IV	Least Concern
368	Muscicapidae	Blue-fronted Robin	Cinclidium frontale	Sch IV	Least Concern
369	Muscicapidae	Slaty-backed Flycatcher	Ficedula hodgsonii	Sch IV	Least Concern
370	Muscicapidae	Rufous-gorgeted Flycatcher Snowy-browed	Ficedula strophiata	Sch IV	Least Concern
371	Muscicapidae	Flycatcher Little Pied	Ficedula hyperythra	Sch IV	Least Concern
372	Muscicapidae	Flycatcher Ultramarine	Ficedula westermanni	Sch IV	Least Concern
373	Muscicapidae	Flycatcher Slaty-blue	Ficedula superciliaris	Sch IV	Least Concern
374	Muscicapidae	Flycatcher	Ficedula tricolor	Sch IV	Least Concern
375	Muscicapidae	Sapphire Flycatcher	Ficedula sapphira	Sch IV	Least Concern

376	Muscicapidae	Black Redstart	Phoenicurus ochruros	Sch IV	Least Concern
377	Muscicapidae	Hodgson's Redstart	Phoenicurus hodgsoni	Sch IV	Least Concern
378	Muscicapidae	Daurian Redstart	Phoenicurus auroreus	Sch IV	Least Concern
379	Muscicapidae	Blue-fronted Redstart Plumbeous Water	Phoenicurus frontalis Phoenicurus	Sch IV	Least Concern
380	Muscicapidae	Redstart White-capped	fuliginosus Phoenicurus	Sch IV	Least Concern
381	Muscicapidae	Redstart	leucocephalus	Sch IV	Least Concern
382	Muscicapidae	Blue Rock Thrush Chestnut-bellied	Monticola solitarius	Sch IV	Least Concern
383	Muscicapidae	Rock Thrush	Monticola rufiventris	Sch IV	Least Concern
384	Muscicapidae	Pied Bush Chat	Saxicola caprata	Sch IV	Least Concern
385	Muscicapidae	Grey Bush Chat	Saxicola ferreus	Sch IV	Least Concern
386	Muscicapidae	Isabelline Wheatear	Oenanthe isabellina	Sch IV	Least Concern
387	Cinclidae	Brown Dipper Yellow-bellied	Cinclus pallasii Dicaeum	Sch IV	Least Concern
388	Dicaeidae	Flowerpecker	melanoxanthum	Sch IV	Least Concern
389	Dicaeidae	Plain Flowerpecker Fire-breasted	Dicaeum minullum	Sch IV	Least Concern
390	Dicaeidae	Flowerpecker Scarlet-backed	Dicaeum ignipectus	Sch IV	Least Concern
391	Dicaeidae	Flowerpecker Ruby-cheeked	Dicaeum cruentatum Chalcoparia	Sch IV	Least Concern
392	Nectariniidae	Sunbird	singalensis	Sch IV	Least Concern
393	Nectariniidae	Purple Sunbird Green-tailed	Cinnyris asiaticus	Sch IV	Least Concern
394	Nectariniidae	Sunbird Black-throated	Aethopyga nipalensis	Sch IV	Least Concern
395	Nectariniidae	Sunbird	Aethopyga saturata	Sch IV	Least Concern
396	Nectariniidae	Crimson Sunbird	Aethopyga siparaja	Sch IV	Least Concern
397	Nectariniidae	Fire-tailed Sunbird	Aethopyga ignicauda Arachnothera	Sch IV	Least Concern
398	Nectariniidae	Little Spiderhunter Streaked	longirostra	Sch IV	Least Concern
399	Nectariniidae	Spiderhunter	Arachnothera magna	Sch IV	Least Concern
400	Passeridae	House Sparrow Eurasian Tree	Passer domesticus	Sch IV	Least Concern
401	Passeridae	Sparrow	Passer montanus	Sch IV	Least Concern
402	Ploceidae	Baya Weaver	Ploceus philippinus	Sch IV	Least Concern
403	Estrildidae	Red Avadavat White-rumped	Amandava amandava	Sch IV	Least Concern
404	Estrildidae	Munia	Lonchura striata	Sch IV	Least Concern
405	Estrildidae	Chestnut Munia	Lonchura atricapilla	Sch IV	Least Concern
406	Prunellidae	Alpine Accentor Rufous-breasted	Prunella collaris	Sch IV	Least Concern
407	Prunellidae	Accentor	Prunella strophiata	Sch IV	Least Concern

400	D 11: d	Maroon-backed	Down all a income and ada	Cal. IV	Last Canasan
408	Prunellidae	Accentor Western Yellow	Prunella immaculata	Sch IV	Least Concern
409	Motacillidae	Wagtail	Motacilla flava	Sch IV	Least Concern
410	Motacillidae	Citrine Wagtail	Motacilla citreola	Sch IV	Least Concern
411	Motacillidae	Grey Wagtail	Motacilla cinerea	Sch IV	Least Concern
412	Motacillidae	White Wagtail	Motacilla alba	Sch IV	Least Concern
413	Motacillidae	Paddyfield Pipit	Anthus rufulus	Sch IV	Least Concern
414	Motacillidae	Blyth's Pipit	Anthus godlewskii	Sch IV	Least Concern
415	Motacillidae	Olive-backed Pipit	Anthus hodgsoni	Sch IV	Least Concern
416	Motacillidae	Rosy Pipit	Anthus roseatus	Sch IV	Least Concern
417	Elachuridae	Spotted Elachura	Elachura formosa	Sch IV	Least Concern
418	Fringillidae	Collared Grosbeak	Mycerobas affinis	Sch IV	Least Concern
419	Fringillidae	Brown Bullfinch	Pyrrhula nipalensis	Sch IV	Least Concern
420	Fringillidae	Grey-headed Bullfinch	Pyrrhula erythaca Pyrrhoplectes	Sch IV	Least Concern
421	Fringillidae	Golden-naped Finch Dark-breasted	epauletta	Sch IV	Least Concern
422	Fringillidae	Rosefinch Plain Mountain	Procarduelis nipalensis	Sch IV	Least Concern
423	Fringillidae	Finch	Leucosticte nemoricola	Sch IV	Least Concern
424	Fringillidae	Common Rosefinch	Carpodacus erythrinus	Sch IV	Least Concern
425	Fringillidae	Scarlet Finch Dark-rumped	Carpodacus sipahi	Sch IV	Least Concern
426	Fringillidae	Rosefinch Crimson-browed	Carpodacus edwardsii Carpodacus	Sch IV	Least Concern
427	Fringillidae	Finch Black-headed	subhimachalus	Sch IV	Least Concern
428	Fringillidae	Greenfinch	Chloris ambigua	Sch IV	Least Concern
429	Emberizidae	Crested Bunting	Emberiza lathami	Sch IV	Least Concern
430	Emberizidae	Tristram's Bunting	Emberiza tristrami	Sch IV	Least Concern
431	Emberizidae	Little Bunting	Emberiza pusilla	Sch IV	Least Concern
432	Emberizidae	Chestnut Bunting Black-faced	Emberiza rutila Emberiza	Sch IV	Least Concern
433	Emberizidae	Bunting	spodocephala	Sch IV	Least Concern

APPENDIX IV: CHECKLIST OF MAMMALS OF THE DIBANG VALLEY (Incomplete list)

	Common name	Scientific name	WLPA 1972	IUCN	Source
1	Tiger	Panthera tigris	Schedule I	EN	CT
2	Clouded leopard	Neofelis nebulosa	Schedule I	VU	CT
3	Asiatic golden cat	Pardofelis temminckii	Schedule I	NT	CT/DS
4	Marbled cat	Pardofelis marmorata	Schedule I	NT	CT
5	Leopard Cat	Prionailurus bengalensis	Schedule I	LC	CT/DS
6	Asiatic wild dog	Cuon alpinus	Schedule II	EN	CT
7	Himalayan black bear	Ursus thibetanus	Schedule II	VU	CT
8	Red panda	Ailurus fulgens	Schedule I	EN	CT
9	Spotted linsang	Prionodon pardicolor	Schedule I	LC	CT/DS
10	Masked palm civet	Paguma larvata	Schedule II	LC	CT
11	Yellow throated marten	Martes flavigula	Schedule II	LC	CT/DS
12	Yellow bellied weasel	Mustela kathiah	Schedule II	LC	CT
13	Siberian weasel	Mustela sibirica	Schedule II	LC	CT
14	Smooth-clawed otter	Lutrogale perspicillata	Schedule II	VU	CT
15	Mishmi takin	Budorcas taxicolor taxicolor	Schedule I	EN	CT/DS
16	Himalayan serow	Capricornis sumatraensis	Schedule I	NT	CT/DS
17	Gongshan muntjac	Muntiacus gongshanensis	Status undetermined	Data deficient	CT/DS
18	Indian muntjac	Muntiacus muntjak	Schedule III	LC	CT/DS
19	Wild pig	Sus scrofa cristatus	Schedule III	LC	CT/DS
20	Red goral	Naemorhedus baileyi	Schedule III	VU	CT/DS
21	Arunachal macaque	Macaca munzala	Status undetermined	EN	CT
22	Assamese macaque	Macaca assamensis	Schedule II	NT	CT
23	Hoary-bellied Squirrel	Callosciurus pygerythrus	Schedule II	LC	CT

24	Himalayan stripped squirrel	Tamiops mcclellandii	Schedule IV	LC	CT
25	Himalayan pika	Ochotona himalayana	Status undetermined	LC	CT
26	Mithun	Bos frontalis	Status undetermined	LC	CT
27	Himalayan jungle rat	Rattus nitidus	Schedule VI	LC	CT
28	Himalayan musk deer	Moschus leucogaster	Schedule I	EN	HS
29	Golden jackal*	Canis aureus	Schedule II	LC	CT
30	Common palm civet*	Paradoxurus hermaphroditus	Schedule II	LC	CT
31	Indian sambar*	Rusa unicolor	Schedule III	VU	CT
32	Rhesus macaque*	Macaca mulatta	Schedule II	LC	CT
33	Malayan porcupine*	Hystrix brachyura	Schedule II	LC	CT
34	Asiatic brush tailed porcupine*	Atherurus macrourus	Schedule II	LC	CT
35	Eastern hoolock gibbon (Mishmi Hills subspecies)*	Hoolock leuconedys mishmiensis	Schedule I	VU	DS
36	Chinese pangolin	Manis pentadactyla	Schedule I	CR	CT (WII 2019)
37	Particolored Gliding Squirrel	Hylopetes alboniger	Schedule II	LC	Krishna et al. (2016)
38	Pallas' squirrel	Callosciurus erythraeus	Schedule IV	LC	DS (WII 2019)
39	Grey Headed Gliding Squirrel*	Petaurista caniceps	Schedule II	LC	Krishna et al. (2016)
40	Hodgson's Giant Gliding Squirrel*	Petaurista magnificus	Schedule II	LC	Krishna et al. (2016)
41	Bhutan Giant Gliding Squirrel*	Petaurista nobilis	Schedule II	LC	Krishna et al. (2016)
42	Red Giant Gliding Squirrel*	Petaurista petaurista	Schedule II	LC	Krishna et al. (2016)
43	Mishmi Hill Giant Gliding Squirrel	Petaurista mishmiensis	Schedule II	LC	Krishna et al. (2016)
44	Yunnan Giant Gliding Squirrel	Petaurista yunanensis	Schedule II	LC	Choudhury (2013a)
45	Malayan Sun bear*	Helarctos malayanus	Schedule I	VU	CT

46	Leaf-nosed bat^	Hipposideros larvatus leptophyllus	-	LC	ZSI 2006
47	Pere David's Vole^	Eothenomys melanogaster libonotus	Schedule IV	LC	ZSI 2006
48	South China field mouse^	Apodemus draco	Schedule V	LC	ZSI 2006
49	Millard's Rat^	Dacnomys millardi wroughtoni	Schedule V	DD	ZSI 2006
50	Ryley's Spiny Mouse^	Mus cookii nagarum	Schedule V	LC	ZSI 2006
51	Brahma white- bellied rat^	Niviventer brahma	Schedule V	LC	ZSI 2006
52	Himalayan white- bellied Rat^	Niviventer niviventer	Schedule V	LC	ZSI 2006
53	Greater Horseshoe Bat^	Rhinolophus ferrumequinum tragatus	-	LC	ZSI 2006

Sources: CT- Camera trap record; DS – Direct sighting; HS – Hunted specimen collected by Nijhawan (2018) and Nijhawan and Mitapo 2020 (unpublished data)

^{*}Evidence exclusively from Lower Dibang Valley district

[^]Evidence from Dihang Dibang Biosphere Reserve (ZSI 2006)